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ENUMERATION OF POSETS GENERATED BY
DISJOINT UNIONS AND ORDINAL SUMS!

RICHARD P. STANLEY

ABSTRACT. Let f be the number of n-element posets which can
be built up from a given collection of finite posets using the operations
of disjoint union and ordinal sum. A curious functional equation is ob-
tained for the generating function Efnxn. Using a result of Bender, an
asymptotic estimate can sometimes be given for fn. The analogous prob-

lem for labeled posets is also considered.

Let P and Q be partially ordered sets (or posets). Regard P and Q as
being relations on two disjoint sets T and T', respectively. The disjoint
union P + Q is defined to be the partial ordering on T U T satisfying: (1)

If x €T,y €T,and x <y in P, then x<y in P+ Q; Q) ifx € T', y € T, and
x<y in Q then x <y in P + Q. The ordinal sum P®Q is defined to be
the partial ordering on T U T' satisfying (1), (2), and the additional condi-
tion (3) if x €T and y €T', then x <y in P®Q. Hence + is commutative
but @ is not.

The question we consider is the following., Let S be a set of nonvoid
isomorphically distinct finite posets, such that no element P of § is a dis-
joint union or an ordinal sum of two nonvoid posets. (We say that P is
(+, ® )-irreducible.) How many isomorphically distinct posets of cardinality
n can be built up from the elements of § by the operations of disjoint union
and ordinal sum? Call a poset that can be obtained in this way an S-poset.
Hence if P and Q are S-posets, then so are P + Q and P®Q. Moreover,
the (+, @ )-irreducible S-posets are simply the members of S. For instance,
if § consists of a single one-element poset, then there are two 2-element
S-posets and five 3-element S-posets, viz., 21, 2,31, 2+ 1, (21) & 1, 1®(21),
and 3. Here n denotes an n-element chain and 7P a disjoint union P +...+

P of n copies of P.

Received by the editors April 23, 1973.
AMS (MOS) subject classifications (1970). Primary 05A15; Secondary 06A10.
Key words and phrases. Poset, partially ordered set, disjoint union, ordinal sum,
generating function, Pdlya’s enumeration theorem, functional equation.
1 The research was supported by a Miller Research Fellowship at the University
of Califomia at Berkeley.
Copyright © 1974, American Mathematical Society

295



296 R. P. STANLEY

Let /n denote the number of S-posets of cardinality n. We set /0 =1,
Define the generating function F(x) = Ezzofnx". We shall determine a func-
tional equation for F(x). The technique used is analogous to that appearing
in [3, Chapter 6, $10] for the enumeration of series-parallel networks. How-
ever, instead of a duality principle allowing us to obtain an explicit func-
tional equation for F(x), we instead are helped by the triviality of one of the
two groups arising from the enumeration.

If P is an S-poset and P can be written P, + P, where neither P, is
void, then we say P is essentially +. Similarly if P = P, ® P, where nei-
ther P, is void, we say P is essentially @ . Every S-poset not a member
of § is either essentially + or essentially @ , but not both. By convention
we agree that every member of § is both essentially + and essentially & .

Let a  be the number of n-element members of §, so a, =0 since we
are assuming the members of § to be nonvoid. Let u, be the number of
n-element essentially + S-posets and v, the number of n-element essentially
& S-posets. We define u; = v, = 0. Hence [, =u_ + v,—a, if n> 1. De-

fine the generating functions

0 o0 o0
Alx) = 3 a x", Ux) =3 u ", Vix)=3 v "
n=0 n=0 n=0
It follows that
(1) F(x) = Ulx) + V(x) — Alx) + 1.

Now every essentially + S-poset P not belonging to S can be written
uniquely as a disjoint union P, + P, +...+ P~ of m >2 essentially &
S-posets P, where the order of the P.’s is immaterial. Let u, . bethe num-
ber of essentially + S-posets of cardinality » which are the disjoint union
of m essentially ® S-posets. Define for m > 2 the generating functions
U (x)=2% ju  x".

Since the order of addition in a disjoint union is immaterial, it follows

immediately from Pélya’s theorem, as expounded in [3, Chapter 6], that
(2) Um(x) = Z(6m|V(x), V(xz)’ V(X?’), S ): m Z 27

where Z(Gmlzl, Zy Byt -) is the cycle index polynomial of the symmetric
group ©  of degree m. Now A(x) + 32> U _(x) = U(x). Hence from (2) we

obtain

o

(3) Ulx) = A(x) + 3 Z(€ |V(x), v(x?), v(x3), <) = V(x) - 1,

m =0

since Z(GOIV(x), V(xz), ...)=1 and Z(61|V(x), V(xz), ced) = Vix).
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Now it is well known that

Z Z(Gmlzl, z,, 2z, ce)t™ = exp(z1t+ z2t2/2 + 23t3/3+ cl)

m =0
(cf. [3, p. 133]). Thus from (3) we get

0 k
(4) Ulx) = exp | > V(]: )| _ V(x) + A(x) - 1.

k=1

Similarly every essentially @ S-poset P not belonging to S can be
written uniquely as an ordinal sum P, ®P,® ... ®P  of m > 2 essentially
+ S-posets P, where now the order of the P.s is fixed. Define v and
V_(x) for m > 2 in analogy to z  and U, (x). Since now the order of sum-

ming cannot be altered, we get from Pdélya’s theorem that
(5) v_(x) = Z(G, | U(x), Uxd), Ux3), -+4), m>2,

where Z(G |z, 2z, 25, -) is the cycle index polynomial of the trivial

group G of order one acting on an m-set. Since Z(G, |z, z,5ee0) = 2T, we

get
(6) v, (x) = U™,  m>2

Of course (6) can be easily obtained directly, but we wanted to make clear
the similarity of (2) and (5).

Now
V(x) = Alx) + Z Vm(x) = Z U(x)™ - Ulx) + A(x) = 1,
m=2 m =0
so
@ V(x) = 1/(1 - U(x)) - Ulx) + Alx) - 1.
Eliminating U(x) from (1) and (7) yields
(8 V(x) = F(x) + 1/F(x) = 2 + A(x).
Thus by (4) and (8),
F(x) = Ulx) + V(x) = Alx) + 1

-1 1
= exp Z I G(xk) 4 F(xk) -2+ A(xk)> .

k=1

We have obtained
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Theorem 1. F(x) satisfies the functional equation

- 1 k 1 E
9 F(x) = ZF(x®) 4 ——— = 2+ A(x®)])].
exp kz=l A ( + F(xk) + >

Since exp (2:; 1axk-/k) = (1 = x)7%, (9) may be rewritten in the rather

curious form
PEI ) (e
i=1

where 1/F(x)=1 + E?gixi.

For instance, if S consists of a single one-element poset, then A(x) =
x and

F(x) =1+ x+ 2x2 + 5% + 15x% + 48x5 + 167x% + .

Another case of interest is when § consists of all isomorphically distinct
finite (+, ®)-irreducible posets. Then /, is the number of isomorphically
distinct posets of cardinality 7. It can be shown (cf. [4] for the numbers
{,) that here

A(x) = x + x% 4 12x7 + 104x° + 956x7 + + -+,

Flx) = 1+ x+ 2x2 + 5x3 + 16x* + 63x> + 318x% 4+ 2045x7 + .+
A theorem of Bender [1, Theorem 5] allows the determination of an
asymptotic formula for f, when A(x) is a polynomial. We shall spare the
reader the details of the calculations and merely state that when A(x) = x,

=3/23=" Where a is the unique positive root of F(a) -~

we get [ ™~ Cn
(1 ++/5)/2, and C is a constant given by
1/2

1 < i 1
akF(ab)(1 - ———
m(3y/5 - 5) l—a ; @ ( F(ak)2>

Note that not surprisingly f, is very much smaller than the tota/ number p,
posets of cardinality », which by [2] is given by p_ _gn¥/atond)

One can also ask analogous questions for Zabeled posets. A labeling
of a finite poset P is an injection ¢: P 5 Z, Two labelings, ¢ and ¢, of
P are equivalent if there is an automorphism p: P > P and an order-preserv-
ing injection 0: Z > Z such that ¢ = oyyp. Let S be a set of nonvoid in-
equivalent (+, @ )-irreducible labeled finite posets. Let », be the number of
n-element inequivalent labeled posets (P, ¢) that can be built up from the
members of S by the operations of + and @ , such that the restriction of ¢
to any (+, @ )-irreducible component of P is equivalent to the labeling of a
member of S. (We set hy = 1 by convention.) Let & be the number of n-ele-

ment members of S (so b, = 0). Define the exponential generating functions
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00 o0 n

xn
B(x)= Y bn',ﬁ" H(x) = ) hn;!--
n=0 ) n=0
Then by an argument analogous to that used to prove Theorem 1, which we

omit, one obtains

Theorem 2. H(x) satisfies the functional equation

H(x) = exp[H(x) + 1/H(x) - 2 + B(x)).
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