COMBINATORIAL RECIPROCITY THEOREMS *

R.P. STANLEY
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A combinatorial reciprocity theorem is a result which establishes a
kind of duality between two related enumeration problems. This rather vague
concept will become clearer as more and more examples of such theorems are
given. We shall be content in this paper with explaining the meaning of
various reciprocity thecrems vig mere statements of results, together with
clarifying examples. A rigorous treatment with detailed procfs appears
in [11].

1. POLYNOMIALS

A polynomial recivrocity theorem takes the following form., Two combina—

torially defined seguences 51,82,... and Ei,gé,... of finite sets are given,
such that the functions fi(n) = }Snl and £in) = |§;\ are polyvnomials in n for
all integers n = 1. One then concludes that E(n) = (—l)df(—n), where

d = deg f. Frequently the numbers £(0) and F(0) will have a special signif-

icance.

EXAMPLE 1.1. Fix p > 0. Let f(n) be the number of combinations with
repetitions of n thinge taken p at a time. Let F(n} be the number of such
combinations without repetitions. Thus fin) = [n+§—1] and f(n) = (2]. Eence
it can be verified by inspection that f(n} and %fﬁ) are polynomial; in n

of degree p, related by i) = (—l)pf(_n).

EXAMPLE 1.2.(THE ORDER POLYNOMIAL). Let P be a finite partially ordered set
of cardinality p > 0. Let w: P > Ip] be a fixed bijection, where we use

the "French notation" [p] = {1,2,...,p}. Let 2(n) denote the number of maps
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o: P > [n] such that (i) x £ y in P implies o(x} < oly), and {(ii) x < ¥y
in P and wi{x}) > w(y) implies co(x) < o{y). Let Q(n) denote the number of
maps 7: P » [n] such that (i) x £ v in P implies t(x) < T{y), and (ii}
X <y in P and w(x) < w(y) implies ti(x} < T(y). Then it can be shown [8§,
Proposition 13.2(i)] that & and { are polynomial functions in n of degree
p related by fin) = (-1)¥9(-n). We call @ the order polynomial of {(P,w).
There are several ways to prove this reciprocity relationship between @ and
ﬁ} perhaps the simplest by a judicious use cf the Principle of Inclusion-
Exclusion which we leave to the reader. Note that if P is a p-element chain
and w is order-preserving, then 2(n} {n+§—1} and ﬁkn) = (E), 50 example
1.1 is a special case.

Several interesting conseguences of the reciprocity between I and 5]
are derived in [8,819]. For instance, if w is order-preserving then for some
integer £ we have {Q(n} = (—I)PQ(—Z—n) for all n if and only if every maximal

chain of P has length L.

EXAMPLE 1.3. (CHROMATIC POLYNOMIALS). Let G be a finite graph without iloops
or multiple edges, with vertex set V of cardinallity p. Let x{(n) dencte the
number of pairs (0,0), where (i) @ is an acyclic orientation of the edges of
G, and (ii) o: Vv » [n] is any map V ~ [n] such that if u » v in 0 (so

u,v € V and uv is an edge of G) then o{(u} > o{v). Let ¥(n) be the number of
such maps with the condition o{u) > g({v) replaced with c{u) 2 o(v). It is
easily seen that y(n) is the chromatic polynomial of G. In [9] two proofs
are given of the reciprocity thecrem ¥(n) = (—1)px(—n). In particular,

(—l)Px(—l) is the number of acyclic orientations of G.

EXAMPLE 1.4. (ABSTRACT MANTFOLDS). Let A be a finite simplicial complex

with vertex set V, with |V]| = p. Thus A is a collection of subsets § of V such
that {v} € A for all v €V, and if S e¢ A and T < S, then T e A, Let

£, = fi(A) be the number of (i+l)-sets contained in A. Hence £ . = 1 and

i 1

f0 = p. Define the polynomial A{A,n) by

A A! = £, 1'1.‘1
{&,n) igo 1[1]

Note that A(4,0) = fo—f1+f2—... = x{4}, the Euler characteristic of A.
Now suppose that the underlying topological space |A] of & is homeo-—
morphic to a d-dimensional manifold with boundary. Hence deg AlA,n) = 4d.

Denote by 3A those elements of A such that |2A] = 314l, in the cbvious
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sense, Hence oA is itself a simplicial complex, with vertex set contained

in V. It follows from a result of MACDONALD [S, Proposition 1.1] that
a
(1.1) (-1} AfA,-n) = A(A,n) - A{B3A,n)

For instance, let A consist of ABCD, BCDE, and all their subsets
(ABCD is shert for {A,B,C,D}, etc.) Then 4 = 3, |A| is a 3-ball, and 3A

consists of ABC,ABD,ACD,BCE,CDE,BDE, and all their subsets. Moreover,

Aam =5+ o (") ¢ () 4 2070

and

n-l).

Al3A,n) = 5 + 9(“}1} + 6 5

It follows from (1.1) that

n=1 n-1
e = (7 - 2073
A special case of particular interest occurs when 34 = @, i.e,, when

|A| is a manifold. We then have from (1.1} that
e
(1.2) (=1)"AlA,-n) = A(A,n)

Now (1.2) imposes certain constraints on the numbers fi which define A.
when |A] is a sphere, these constraints are simply the well-known

DEHN-SOMMERVILLE equaticns [4, Chapter 91 [6, Chapter 2.47.

EXAMPLE 1.5. (CONCRETE MANTIFOIDS). Let M be a subset of the s-dimensional
euclidean space with the following properties: (i} M is a union of finitely
many convex polytopes, any two of which intersect in a common face of both,
(ii) the vertices of these convex polytopes have integer coordinates, and
(iii) M is homeonmorphic to a d-dimensional manifold with boundary. If n > 0,
then let j(n} be the number of points o ¢ M such that no has integer coordi-
nates, and let i{n) be the numker of such points not belonging to 3M. Then
a result due essentially to E. EHRHART [2] (for the generality considered
here, one alsc needs [5, Proposition 1.1]) states that j{n) and i(n) are

polynomial functions of n of degree d satisfving
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(1.3) 500) = x(M), im = (-13%(-m)

We remark that condition (ii) can be replaced by the regquirement (ii'") the
vertices have rational coordinates. In this case i and j need no longer be

polynomials, but instead there is some N > 0 and polynomials jO’jl""'jN ]

I B |
and 1 edgreeerty

n % a(mod N). We then have in place of (1.3) that j

such that j(n) = ja(n) and i{n) = ia(n) whenever
. G(0) = (M) and ia(n) =
= {~1) j&a(—n), where the subscripts are taken modulo N.

An interesting application of (1.3) is to the problem of finding the
volume V(M) of a subset M satisfying conditions (i}, (ii}), (iii), and the
additional condition that s = d. It is easy to see that then the leading
coefficient of ji{n) is V(M}, Hence from (1.3} we see that if we know any
é+1 of the numbers y(M), j({n), i{n), n 2 1, then we can ccmpute V(M). For

a further discussion of this result {including references), see [11],

EXAMPLE 1.6. (MAGIC SQUARES). As a special case of example 1.5, take M to

be the set of all doubly stochastic N X N matrices, so s = N2 and d = (N—l)%
It is well-known that M is a convex polytope whose vertices have integer co-
ordinates, so jin) and 1i(n}) are polynomials in n of degree (N-1)2. Tt is
easy to see that j(n) is the number of N x N matrices of non-negatiwve

integers with every row and column sum equal to n, while i{n} is the number

of such matrices with positive entries. Clearly i(0} = i{1) = ... = i{N-1} =
= (0 and i(N+n) = j(n) for n = 0. There follows from (1.3},
ji=1) = 3(-2) = ... = j(-N+1) =0 ,
N_
3y = (=05 (en)

These results were first obtained in [10]. Another proof is given in [3].

2. HOMOGENEOUS LINEAR EQUATIONS

Consider the homogeneous linear equation x = y. Let F(X,Y) = ZX&YB,
where the sum is over all sclutions (%,y¥) = (o,B}) to x = ¥y in non-negative
integers a,f. Let EIX,Y) be the corresponding sum over all scolutions in
positive integers. Clearly F(X,¥) = 1/(1-x¥) and F(X,¥) = X¥/(1-X¥). Hence

as raticnal functions we have EYX,Y) = -F{1/X,1/Y). It is this result we
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wish to extend to more general systems of equations.

THEOREM 2.1. [10, Theorem 4.1]). Let E be a system of Ffinitely many linear
homogeneous equations with integer coefficients, in the variables
XprXpreeorXo. Define

1.%2
FUX rXyrurX ) = Xxl 2,50 7,

2]’
{2.1)

F(X| RyreeesX ) = [xl L

where (o, .o -ra ) ranges over all solutions xg =0y of E in non-negative

o

integers Gys while (ByeByr--wsB ) ranges cver all solutions in positive

integers. Then F and F are rational functions of the xi’s {in the algebra

of formal power series, or for |Xi| < 1) A necessary and sufficient

condition that
F(xl,xz,...,xs) = # F(l/xl'l/XZ""'l/xs) ’

as raticnal functions, 18 for E to possess a solution in posttive integers.

In this case the correct sign 1s (—1)K, where v is the corank (= s-rank EJ

of E.

Many of the results in section 1 can be deduced from the above theorem.
We require a connecticn between evaluating polynomials at +n and -n, and
substituting 1/Xi for Xi in a rational function. Such a connection is provid-

ed by the next result, which EHRHART [1] attributes to PoPovICIU [7].

PROPOSITION 2.1. Let H(n) be a furnction from the integers 7 to the complex
numbers C of the form

H(n) =
i

Il ~1H

P.(n)a? '
1 1 1

where the ai’s are fired non=gero complex wumbers and each P, 18 a polynomial

in n. Define

Hn)x", F(X) = ) E(-m)X"
0 n=1

F(X) =
n

|~ 8
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Then F and F are rational fumctions of X, related by F(X) = -F(1/X).

Theorem 2.1 suggests that we try to find “rational function analcgues"

of examples 1.4 and 1.5.

PROPOSITION 2.2. Let A be a finite simplicial complex with vertices

2
Define the generating functions

VeV ,...,Vp. Suppose |A| s homeomorphic to a d=-memifold with boundary.

- 1 p
AV o VyreeaV ) Zvl Vo eV e X -,
£ £ £
= _ 1 2 =]
F(VyeVyreensV) = Lov v, A

where (61,52,...,6p) ranges over all p~tuples of non-negative imtegers such

that {vi I 6i>0} e b, while (= _,¢ .,ep) ranges over all p—tuples of non—

172"
negative integers such that g # v, | £,>0} ¢ A-84. Then ¥ and F are ration-

al funections of the v;'s related b

d+1 :
F(Vl,Vz,...,Vp) = (=1} F(l/Vl,l/Vz,...,lfvp)

Proposition 2.2 is a conseguence of MACDONALD's result [5, Proposition
1.1] mentioned earlier. It is easily seen that

nea,mxt

¢

FIX,%,.0.,%X)

]
N ~18

n

n
F(X,X,...,X) =

Ca(a,ny-A(BA,n) X"
1

Ir~18

n
in the notation of example 1.4. Thus (1.1) follows from propositicns 2.1

and 2.2.

PROPOSITION 2.3. Let M satisfy properties (i), (ii') and (iii) of example
1.5, Define

F(X, X

1 2,...,XS,Y)

I
=
=
+
1
s
-
—
>
(o)
)
b
et

— 1
Faeey r = X “as
F (X, /X, X_.¥) Exl 5 x By,

where (al,u2,...,as,n) ranges over all (s+l)~tuples of non—negative integers
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o, and pogitive integers n such that (e /n,e,/n,. .0 /n) c M, while
(E1,Bz,-..,65,n) ranges over all such (s+1)—tuples with (Bl/n,Bz/n,...,Bs/m
€ M-3M, Then F and F are rational functions related by

d+1

F{X, ,X ..,XS,Y) = (-1} F(l/Xl,l/XZ,-..,1/XS,1/Y)

1772

If we put each Xi = 1 and apply proposition 2.1, then we get (1.3).

3. RECTPROCAL DOMAINS

In theorem 2.1, we considered solutions ey 20 (i=1,2,...,s8) and
Bj > 0 {3=1,2,...,8) to a system of homogeneous linear eguations. It is
natural to consider the following generalization. Let E be a system cf

finitely many linear homogeneous eguations with integer coefficients, in

the variables RyrRgreooaX {as in theorem 2.1). Let $ < [s]. Define
o, o o
1,72 s
F X+ X . ¢0-.,% = )&, X, ... X
SR Ry en R ) = )RR, .
(3.1)
F_(X, ,X X_) = 2x81xe2 XBS
T i M-S A
where (ul,az,...,as) ranges over all solutions te E in nen-negative integers
such that ai >0 if i € 8§, while (81,82,...,85) ranges over all sclutions to
E in nen-negative integers with Bi >0 if 1 ¢ 5. Thus Eé = F[S]_S. Note that
FQ} = F and FQI = F, where F and F are given by {(2.1).

We now ask under what conditions do we have

K
(3.2) F(xl.xz,...,xs) = (-1} F(l/xl,lfxz,...,l/xs) .
where k is the corank of E. Tt seems plausible that (3.2) will hold whenever
E has a seclution in positive integers, as in theorem 2.1. In [11], however,
we show that this is not the case; and we show why it is likely that there
are no simple necessary and sufficient conditions for (3.2) to hold.

There is, however, an elegant and surprising sufficient condition.

THEOREM 3.1. [ 11, Proposition 8.3]. A sufficilent condition for (3.8) to hold

18 that there swxists a solution (Y ryrea¥y) to E in integers ' such that
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ke 02f i e S and Yy < 0 1f i ¢ s.

The proof of thecrem 3.1 depends on a rather complicated geometric
argument suggested by a result of EHRHART [1, p.22] on "reciprocal domains".
It is much easier, on the other hand, to give a necessary condition for

(3.2) to hold.

PROPOSITION 3.1. If (3.2) holds, them either F = F = 0, or else E has a

solution in pogitive integers.

PROOF. Assume (3.2) holds but not F = ¥ = 0. Then F # 0 and F # 0, so E has

solutjions a = (al,u ...,as) and B = (81.82,...,85) as given in (3.1). Then

2’
@ + R is a solution to E in positive integers. [l

4. INHOMOGENEOUS EQUATIONS

Another way of extending thecrem 2.1 besides theorem 3.1 1is to consider
inhiomogeneous linear equations. Suppose we have a system

(4.1) x, =b, , j e [p]

1371 3 r

I ~1m
w

i=1

of p inhomogenecus linear equations with integer coefficients a . and

integer constants bj, in the variables X ,x IEREYS It turns out that the

1772

correct reciprocal ncotions to consider in this context are (i) solutions
to {4.1) in non-negative integers, and (ii) solutions in positive integers
to the "reciprocal system"

5
(4.2) izlaijx,1 = by, j e fpl

Suppose, for example, that § < [s] and that

b, = - X a .o 3 ¢ [pl
I ieg M
Hence a solution (&1,...,us) to (4.1) in non-negative integers corresponds

to a solution (B -rBS) of the system Zaijxi = 0 in integers Bi satisfyving

r
R, 20 4f 1 €S, 8, >0 4if i € § (set B, =, if i £ S, B, = u,+1 if & < ).
1 1 1 1 ha 1

Moreover, a solution (2 .,as) to (4.2} in positive integers corresponds

e
te a solution (Bl....,BS) of the system Zaijxi = 0 in integers Bi satisfying
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B, >0 1if i ¢ S, B, 20 if i € 8 {(get B, =a, if i ¢ S; B, = a,-1 if i « 8}.
i i i i i i

Hence our notion of reciprocity for inhomogeneous systems includes the

reciprocity of section 3 as a special case.

We therefore define

. CRL o
= ees X R
(4.3)
B, B 8
- 1.2 s
F(X rXyreeer X)) = [xl LI
where (ul,ug,...,us) ranges over all solutions to (4.1) in non-negative

integers, while (81,82,...,85) ranges over all solutions to (4.2) in posi-
tive integers. As usual, we seek conditions when F(Xl,XZ,...,XS) =

= (—1)KF(1/X1,1/X2,...,1/XS), where k is the corank of {4.1) or (4.2). We
shall say that (4.1) has the F-property if E]xl,xz,...,xs) =

= (—l)KF(llxl,l/xz,...,1/XS). The possibility of obtaining reasonable
necessary and sufficient conditions for E to have the R-property appears
hopeless, and even reascnably general sufficient conditions are rather
complex and not very edifying. We shall now discuss the nature of the suf-
ficient conditions cbtained in [117.

Let {11,1 ..,ik} be a set of X < p elements from [s] such that the

2"
determinant of coefficients taken from the first k rows and from columns

11,12,.-.,1k of (4.1) is non-zero. Hence we can solve the first k equaticns

(i.e., J € (k1) of (4.1) for x, ,%x. ,...,X, in terms of the remaining x,'s
Ty 1z Ty i

and substitute these wvalues iIn the remaining p-k equations, obtaining p-k

egquations in s-k unknowns. Let E(il,i ..,i ) denote the first of these

‘e Kk
p-K equations {i.e., the equation resilting from meking the above substi-
tution into the (k+1)-st equation of (4.1)}. Thus in particular E(@) is just
the first edquation Zailx.l = b1 of (4.1). Note that the equations
E(il'iZ""'ik) are really determined only up to a non-zero multiplicative
constant. This need not concern us since we will be interested only in

solutions to these equations.

EXAMPLE 4.1. Consider the system
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Then we obtaln the equations

E{@}: LR P 3x3 = h1

E(l}: 2x2 - x3 - x4 = b2
E(2)}: 2x1 + 5x3 - x4 = 2b1 + b2
E(3): Xy + 5x2 - 3x4 = —b1 + 3b2 .

THECREM 4.1, 4 sufficient condition that the system (4.1) has the F-property

s the following. For every set {il,i .,ik} < 5] for which

gre
B dir.epi)) e defined, the single equation B(i ,i,,...,1,) should pos=

sess the R-property.

2’

It should be mentioned that in [11] theorem 4.1 is strengthened so

that only a special subset of the equations E(il,i .,ik) need be con-

P
sidered. However, the definitien of this subset iszrather complicated and
will be omitted here. Theorem 4.1 is proved in [11] using iterated contour
integration. Contour integraticn may seem like an unwarranted artifice for
a result like theorem 4,1. While it is undoubtedly possible to dispense
with contour integration, the next results show that it is not too un-
natural in the present context. We would like to complement theorem 4.1

by obtaining conditicons for a single equation to pessess the R-property.
THEOREM 4.2. Let a x ta X *...ta x = b be q gingle linear equation E with
integer coefficlents a, and integer constant term b. Then the following

three conditions are equivalent.

(i) The rational functions

(4.4) Ab'l/u—;\_al) (r 2y en %
and
(4.5) Ag'l/mx_al) Ao Zy. e
have mero vesidues at » = 0., Here b = “bra -a,-...-al.

(ii) The following two conditions are both satisfied,
{a) There does not exist a solution CL
such that

2,...,&3) to E in integers

e, <0 4f a >0, and

= 7 <
o @ 0 ef a 0
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(b) There does not exist a solution (61,82....,65) to E in integers
such that

B, 20 ZIf a_> 0, ond

Bt <0 1if a, < G
(Note: It <g alear that at least one of (a) or (b) always helds.)
(iii) E has the R-properiy.

THEOREM 4.3. With the hypotheses of theorem 4.2, the following two conditios
are equivalent.

(i) The rational functions of (4.4) and (4.5} have no poles at » = 0.
(i) tz'_ a_<-b< t& a,, where 1:5"— a, (resp.

catisfying a, <0 (resp. a_ > 0J.

g+at) denotes the sum of all a,

If, moveover, either of the two (equivalent) conditions (i) or (ii) <8

satisfied, then E has the R—property.

EXAMPLE 4.2. Consider the system E of example 4.1. By thecrems 4.1 and 4.3,
we see that E has the R-property if

-1 < - b1 < 4
-2 < - b2 < 2
-1 = —2b1 - b2 < 7
-3 < b1 - 3b2 < 6 .
These conditions hold if and only if (bl'bz) = {0,-1),(0,0),(-1,-1),(-1,00,

{(-2,-1) or (-2,0).

Analogously to proposition 3.1, we have a simple necessary condition
for a system (4.1} to have the R-property. The proof is essentially the

same as the proof of proposition 3.1.

PROPOSITON 4.1. Suppose the system (4.1) has the R-property. Then either

F=F =0, or eclee the homogeneous cystem E?

1=1aijxi =0, j e [pl, has a

solution in positive Integers.

We have given a sampling of what we believe to be the most interesting
examples of combinatorial reciprocity theorems. Some additional types of
reciprocity theorems are given in [11], There are many other combinatcrial

relationships which can be viewed as reciprocity theorems and which we have
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not touched on. Examples include the inverse relationship between the

Stirling numbers of the first and second kinds, and the MacWilliams identi-

ties of coding theory. We believe that many new interesting results and

unifying principles are awaiting discovery in the field of combinatorial

reciprocity.
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