'GENERATING FUNCTIONS*

Richard P. Stanley

I. ENUMERATION

One of the fundamental concepts in combinatorial theory is tl}&t
of enumeration, and one of the basic techniques for dealing with

problems of enumeration is that of generating functions. In this

paper we shail survey some of the highlights_of _the theory.of
generating functions and shall discuss some app-]lcatlons_ to specific
problems of enumeration. Many examples will be given—some
classical and well-known, some motre obscure, and a few new.
Qur object will be two-fold: (1) impart to the CaSU?.I reader
some of the flavor of recent work with generating functions, and
(2) impart some facility for using generatiqg functions as a tool for
solving combinatorial problems. In some instances, fuch as Prop-
osition 4.13, Proposition 5.3 and Example 6.11, we bring the reader
pear the frontiers of what we believe to be exciting new areas of re-
search.

* Partially supported by NSF Grant No. P36739,
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Naturally, we can only give a small selection of topics from the vast
subject of the enumerative theory of generating functions. In Sec-
tion 3 we shall consider the “abstract” theory of generating
functions. In Sections 4 and 5 we shall be concerned with two
special classes of generating functions—rational functions and
algebraic functions. Finally in Section 6 we shall discuss a result,
known as the “exponential formula”, which deals with the occur-
rence of the exponential function in certain types of enumeration
problems. Further information about generating functions can be
obtained from, e.g., [10], [28], [33]. These books are devoted
almost entirely to the use of generating functions for solving com-
binatorial problems.

Let I be an index set, and let § = {S.: ¢ € I} be a system of
finite sets S, indexed by I. For our purposes, the Jundamental
problem of enumeration is to “determine” the cardinality of each
. as a function of « € 1. Equivalently, we wish to determine the
counting function N: I — N defined by NG) = |S.|. Here N de-
notes the set of nonnegative integers and |S,| denotes the cardi-
nality (number of elements) of S.. In any combinatorial problem,
there will be some combinatorial relationship between ¢ € I and §..
For instance, we could have I = N with S, being the set of all sub-
sets of the set [n] = {1, 2, ..., n}. Here N(n) = 2. Examples of
index sets frequently encountered in enumeration preblems include
the following:

(i) N, the nonnegative integers.

(ii) N X N, pairs (k. n) of nonnegative integers. For instance,
Si. w could be all subsets of [n] of cardinality k. Then N(k, n) is

commonly denoted ( z )

(iii) P, the positive integers. For instance, S, could be the set of

divisors of n, so N(n) is the well-known number-theoretic function
din}.

(iv) m, the set of all partitions A = (A, A, ...) of all nonnega-
tive integers. Here A € Ny A = N = -+, and N\ is finite. If TN,
= n, then \ is called a partition of n, denoted A + n. For instance,
S could be the set of all permutations in the symmetric group &,
(A + n) whose cycles have lengths Ay, N2, ... . If we write A =
< 1727 3% «.. > to signify that exactly r, of the Aj's are equal to
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i (so if A — n then L ir; = n), then N(A) = |5.| = nl/(1nn)

(2mra)37ra) - .

11. GENERATING FUNCTIONS

We shall not attempt a rigorous general definition of generating
functions but shall content ourselves with various examples. Heu-
ristically, a generating function is a represeniation of a counting
function ¥: I — N as an element F{(N) of some algebra @. The
following are examples of types of generating functions which have
actually arisen in specific enumeration problems. :

2.1. Ordinary generating functions. Here ] = N, @ = C[[X]}

(the ring of formal power series over the complex numbers C), and
N: N — N is represented by

KN, X) = gﬂ N() Xn,

called the ordinary generating function of N. Sometimes I = P
and the sum starts atn = 1.

2.2. Exponential generating functions. J = Nand @ = C{[X]]

as before, while

FIN: X) = EDN(H)X"/H[

2.3. Eulerian generating functions (cf. {16]). Let g be a fixed
positive integer (almost always taken in practice to be a prime power
corresponding to the field GF(g)). Take I = N, @ = C[[X]], and

FN; X) =
éo Nayx/A+ g1 +qg+g)--d+g+ -+ g
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Frequently the denominator is replaced with (1 — g1 — g .-
(1 — g°); this amounts to the transformation X — X/(1 — q).
One advantage of our “normalization” is that F(N; X) reduces to
an exponential generating function when g = 1.

2.4. Doubly-exponential generating functions. 7 = N, @ =
CiX]l, and '

FN; X) = :230 N )X/ (n!)

For instance [3], if N(r) is the number of n X n matrices of non-
negative integers such that every row and column sum equals two,
then FIN; X) = e*2 (1 — X)~'"2, (See Example 6.11.)

2.5. Chromatic generating functions (cf. {7], [321, 39D. I =
N, @ = C[IX]], g € P is fixed, and

FV; X) = "gzo N(n)X"/q( 2 .

n

Sometimes one sees g replaced with q"z’z, amounting to the trans-
formation X — X/g*.

2.6. Power series in two variables. Here 7 = N X N (or pos-
sibly P Xx NN x P, P x P)and @ = C[[X, Y1), the ring of
formal power series in two variables X. Y over C. Then F(N; X, Y)
can take such forms as

o -]

FN; X, )= T ED Nim, n)X"Y",

m=0 n=

ﬁtﬁs

FN; X, V) = ] "EO N(m, n)XmYr/nl,
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FN; X, V)= 20 ;0 N(m, n)XmY"/m!nl,

etc.

2.7. Power series in infinitely many variables. There are two
common possibilities for 7. One is the set $* of all sequences (m,
m, ...) of nonnegative integers with only finitely many # 0,
while the other is the set 7 of all partitions of nonnegative integers.
In either case @ = C[[X,, X3, ...]] = ClX]], the ring of fc{rrfla]
power series in X1, X2, ... over C (each monomial containing
only finitely many different X;). If I = S*, then

FN: X0, Xo, ..)= L _ Nou,m, . XX ..

... =

while if I = =, then

e 8

F(N; Xl, Xa, ) = E NWIXH XS ..., (1)

n=0 A

where A has exactly 7; parts equal to i.

2.8. Dirichlet series. J = P and @ is the algebra  of all
formal Dirichlet series with coefflicients in C. Then

F(N;s) = g‘ NG@n—s.

As C-algebras the two algebras © and C[iX]] are isomorphic (via
the transformation X; -- p;~* where p; is the ith prime), but of
course their analytic behavior is entirely different.

11I. BINOMIAL TYPE

The problem atises of trying to “‘explain” combinatoriaily why
certain types of generating functions such as ZN(#)X" and IN(n) X

B o
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Xr/n! often arise, while other types like EN()X=/(1 + n?) or
IN(n)X"/1' 22 3% - . n" never seem to cccur. Two abstract theories
of generating functions have been formulated to try to solve this
problem—the Doubilet-Rota-Stanley theory of “reduced incidence
algebras™ [11], and the Bender-Goldman theory of *prefabs” [7]
(cf. also the “dissect' theory of M. Henle [22], which combines
features of both the preceding theories). To give the reader some
feeling for this subject we shall discuss the main theorem of
Doubilet-Rota-Stanley concerning power series generating functions
in one variable, :

A partially ordered set (or poset, for short) P will be said to be
binomial if it satisfies the following three conditions:

(a) P is locally finite, i.e., every intetval [x, yI={zix =z < y}
is finite, and P contains arbitrarily large finite chains. (A chain is
a totally ordered subset of P.)

(b) For every intetval [x, y] of P, all maximal chains between x
and y have the same length n = n(x, y). We then call [x, y] an n-
interval. (The length of a chain is one less than its number of ele-
ments.)

(¢} For all # € N, any two n-intervals contain the same number
B(n) of maximal chains.

Clearly from these definjtions we have B(0} = B(l)=1,B(2) =
|[x. y]| ~ 2, where [x, ¥] is any 2-interval, and B(0} = B(1) = B(2)
S DR :

Examples of binomial posets

3.1: P = N with the usual order. Then B{n) = 1 for all # € N.
3.2: P is the lattice of all finite subsets of N, ordered by inclu-
sion. Then B(n) = n!.

- 3.3: P is the lattice of all finite-dimensional subspaces of a vee-
tor space of infinite dimension over GF(q), ordered by inclusion.
ThenBe) = (1 + gl +q+¢)--U+g+g+ .. +g ).

3.4: P is the poset of ali subsets of N X N of the form § X T,
where § and T are finite subsets of N of the same cardinality,
ordered by inclusion. Then B(n) == nl2,

3.5: Let V be an infinite vertex set, let ¢ € P be fixed, and let
P be the set of all pairs (G, o), where G is a function from all 2-sets

A
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{u, v} C V{u # v)into {0, 1, ..., q — 1} such that all but
finitely many values of G are 0, and where o: V — {0, 1} is a map
satisfying the two conditions: (a) if G({x, v}) > 0 then o(u) # o(v},

and () L o(v) < o,
veV

If (G, o) and (H, 7} are in P, define (G, o) < (H, 7) if:
(i) o(v) = 1(v) for all v € V, and
(ii) if o{u) = 7(u) and o(v) = 7(v), then G({w. v}} = H({u, v}).

Then P is a binomial poset with B(n) = ;E?Y This rather arti-
ficial-looking example arises naturally in [39, §3] in connection
with the coloring of graphs.

Observe that the numbers B(n) considered in 3.1-3.5 appear in
the power series generating functions of 2.1-2.5. If we can
somehow associate a binomial poset with generating functions of
the form EN(n)X"/B(n), then we will have “explained” the form of
the generating functions of 2.1-2.5. We also will have provided
some justification of the vague metaprinciple that.ordinary gener-
ating functions are associated with the nonnegative integers,
exponential generating functions with sets, Eulerian generating
functions with vector spaces, etc.

To see the connection between binomial posets and generating
functions of the form IN(X"/B(r), it is necessary to consider
incidence algebras. If P is any locally finite poset, the incidence
algebra I(P) of P (over C, say) is the vector space of all functions
f: S(P) —C, where S(P) is the set of all nonvoid intervals [x, y] of
P, endowed with the multiplication (convolution)

Jelx.y) = L flx, 2)glz. y).

zglx. p|

(We write flx, v) for f{[x. ¥]), etc.) Note that the above sum is finite
since P is locally finite. It is easily seen that I(P) is an associative
algebra with identity & given by 8(x, ¥) = 4, (the Kronecker delta).
If P is binomial, let R(P) be the subspace of I(P) consisting of
functions f constant on r-intervals, i.e., flx. y) = f(z. w) when-
ever [x, y] and [z. w] have the same length. If f € R(P), we write
f(n) for f(x, y), where [x, y] is an n-interval.

A fundamental property of binomial posets is that R(P) is a sub-

T
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aigebra of I(P), i.e., R(P) is closed unde i
, L€, Inder convolution. N
that & € R(P). Indeed, it is easy to see that ote also

n [F
e = £ | ] ftogtn — , @
where | " | denotes the b i - .
; number of elements z in an n-interval [x, vl

such that [x, z] is an i-interval. Since B()B(n — £} maximal chains
of [x, y] pass through a given such z, we have

—._:H— - B(n)
) B(i)B(n — §) * 3)

This is the P-analogue of the formula

Aav _ n!
i e — iy

This analogy is strengthened further by observing that

B(n) = A(mA( — 1) -- - AQ1),
where A(i) = E

We mE.Bn&EmG have from (2) and (3) the following main theo-
rem on binomial posets.

3.6. THEOREM: hmn.ﬁ be a binomial pos P
et. Th _
morphic to C[[X]] via P en R(P) is iso

f= FiXx) = ;W. Jn}X"/B(n).

. Let us consider some applications. In the following example, P
1s assumed to be a binomial poset: ,

L
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3.7. Example: Define { € R(P) by {(n) = 1 for all n € N. Then
for an n-interval [x. y],

{2 = e y) = I {lx, 2) (2 p)

z€[x.p]
= L 1= |[xyll.

2€ [x.y]

Hence, the cardinality N(n) of an n-interval is given by

mzﬁ:ﬁ?\mnzv = ﬁm“e X/ B(n)).
n=0 n=

Thus from 3.1 we have that the cardinality N(») of a chain of length
n satisfies

T NGXr = (5 X0 =11 — X} = L (n+ DX
n=0 n=0

| whence N(n) = n + 1. Similarly from 3.2 the number N(x) of sub-

sets of an n-element set satisfies

m NeXr/n! = { mo X /nlp = e ﬂ:m“c 27 X"/nl,
n=0 n=

whence N(n) = 2. The analogous formula for Eulerian generating
functions first appeared in {16].

3.8. Example: Forn = 1, let N{n) be the number of sequences
0 H a“o < a < --- < @ = n of integers a; such that no ai+1 — a
=1for0 = i < k. Also set N(0) = 1. Let P = N, and define 5 €

R(P) by

a=10orl,

r
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The number of sequences we. mm.mr of length k is m_mmn_w n*(n), so
N = (T 39m) = (1 = -i(n),
NowF,(X) =X+ X3 + ... = X/(1 = X), so
I N@WX = (1 — FyX)-

={1—-XV1—-X—X? @

1+ X4+ X 4+ 25 +3x5 + ...,
It follows that N(n + 1) = F,, the nth Fibonacci number, a well-
known result. The reader should by now be able to find analogous
results for sets, vector spaces, etc., and invent his own modifica-
tions and generalizations. For instance, if |§| = » and M(n} de-
notes the number of chains @ = S, Cc §, C --. ¢ Sy = § such

that each [Siey — 8] = 2,0 < i < &, then in complete analogy to
(4} we have

m._aivx::_ =1 =@~ 1—X)' =2+ X — Nt

For a host of other applications and generalizations to other
types of generating functions (such as Dirichlet series), see [11].

1V. RATIONAL FUNCTIONS IN ONE VARIABLE

Theorem 3.6 sheds considerable light on the “meaning” of gen-
erating functions and reduces certain simple types of combinatorial
problems to a routine computation. However, it does not seem
worthwhile to attack more complicated problems from this point
of view. For the remainder of this paper we will consider other
techniques for obtaining and analyzing generating functions. In
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this section we will consider some aspects of ordinary generating
functions

F(X) = m N(n) X~

which are rational functions in the ring C{[X]], ie., for i:_mw
there exist polynomials P(X), Q(X) € CIX] such that F(X) r.m
P(X)Q(X)"t. Here Q{X)™' is interpreted S. be .z:m element n..m
C[[X]] satisfying QCOQ(X) " = 1. QX)) will .ﬂ:ﬂ if m:&. o:_%._
Q(0) % 0. The fundamental property A.:. rational .?:.nro:m in
C[[X]] from the viewpoint of enumeration is the following:

4.1. Tueorem: Let oy, o1, ..., ©a be a fixed sequence of
complex numbers, d = 1 and aq # 0. The following conditions on
a function N: N — C are equivalent:

(M T NeX* = POO/QU),

where (X) =1 + X + o X* + -+ + Qmu_?_. and P(X) is a
polynomial in X, of degree less than d. relatively prime to QX).
(ii) For all n = 0,

N +d) + alNit + d — 1) + a:Nn |_| d—12)
+ - FasNm) =0, - %)
and N satisfies no relation N(n + ¢} + BiNn + ¢ — O+ -+

B.N(n) = 0, where ¢ < d and each B, is a fixed element of C.
(iii) Foralln = 0,

X
N(n) = .W_ Py,

* L
where 1+ o X + o X2+ -+ + a,X = 11 (1 — vX)%, the vi's

i=]

are distinct, and P{n) is a polynomial in n of degree d; — 1.0J
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Theorem 4.1 is well known in the calculus of finite differences
and has many proofs. Perhaps the simplest ptoof involves
decomposing P(X)/Q(X) by partial fractions. Other proofs can be
given using the calculus of residues, finite difference operators, the
method of undetermined coefficients, ete. :

The main application of Theorem 4.1 is as follows: One fre-
quently can show by non-combinatorial means that a generating
function ZN(n)X" is rational. Theorem 4.1(ii) and (i) then pro-
vide a simple recurrence for calculating N(zz) and a means of esti-
mating the growth of N{n). We shall give as a non-trivial illustra-
tion a minor modification of a result of D. Klarner [23] and G.
Polya [46].

4.2. Example: A polvomino is a finite union P of wunit
squares in the plane such that the vertices of the squates have inte-
ger coordinates, and P is connected and has no finite cut set. Two
polyominces will be considered equivalent if there is a translation
which transforms one into the other (reflections and rotations not
allowed). Let N() be the number of inequivalent n-square polyo-
minoes P with the property that each “row” of P is an unbroken
line of squares, i.e., if L is any line segment parallel to the x-axis
with its two endpoints in P, then L © P. By convention set N(() =
0. Then N(1) = 1, N(2) = 2, N(3) = 6, etc. It is easily seen that

Nn) =L, + 3 — Dy + 1y - D) oos emy + e — 1), (6)

where the sum is over all ordered partitions e + 13 + ... + p,
= n of n into positive integers n; (by convention, the partition with
s = 1 contributes 1 to the sum). Let N.(») be the sum of those
terms of (6) with ny = r, where we set N.(n) = 1, and where we
set N(n) = 0ifr > norn < 0. Thus

Nin) = m NAn),

r=1

NAm) ﬂ..m r+i—1)Nin—1), ren (7)
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Define the generating function
_ oy oo Xr.Yn,
FX. )= L X N/(n)
S0
F(1,Y) = El N(n)Y".
Now (7) implies

o

r +i— DN — XY =
| &)

FX. V=5 XY+

1 a=i r=1i=

XY Xy XY e e
1, + L I iN(m)}Y,
—xr T a—xm OV T 1%y,

=1 i=1

by straightforward computation. N
yLet I% be the subalgebra of CI[X. Y]] consisting of all power

series £ £ A,;X' Y7 such that for each j € N, only finitely many Aij
iJ

are unequal to 0. Define two linear operators L, L D —C|iY]] as
follows:

L.(?_.': ;‘Z‘, AyXY) = F()'Z Ai) Y5,

Lz(? JE A XiYi) = JE(‘TT A }YY4

Note that L, and L; have the “representations”
LHX, ¥) = H(, V), LLHX, ¥) = —2 HX. 1) |x=13

however, for purposes of generalization it is convenient to regard L,
and L; merely as “‘abstract” operators.
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Define G(Y) = L,FX, Y). By applying L, and L, to (8), we obtain
two linear equations involving F(1, ¥) and G(Y'). Specifically, we
get:

2 : . )]
— Y ¥2 Y
N == T A=y FL N+ =y GO,

Here we have used the easily verified formulas

1 (1 2%) = 7t = 1 an

X1y?
Lz( 1= XY)I) =2Y¥(1 — Yp.

Eliminating G(Y) from (9) al!ows us to solve for F(1, ¥) as a func-
tion of Y. The final result is

- Y(1 — ¥p
A, n = 1—5YF 772 — 473

1

= E(—5+4Y+

5~ 13Y + 7r2
I =5YF 772 =377 /"

Hence we see that
N + 3} = 5Nn +2) - N+ 1)+ 4N(n), n = 2.

This recursion is by no means apparent, and no combinatorial
proof of it is known.

It is evident that the above method (due essentially to D.
Klarner [23)], [24], who uses a certain integral representation of
our operator L,) will extend to a much wider class of problems,
See also {46]. For instance, the above method yields after a tedious
computation the following result:
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4.3. ProposiTion: Define
N = SUay + fon ooy + Fog F o+ ez + Foas + iy
where [ is any function f: P — C and where the sum is over all

ordered partitions m + my + +-- + n, =nof n (n = 1). By con-
vention, a summand with s = 1is 0 and with s = 2 is 1. Define

FXO = T NX», f= T fiXn A =X/1 = X).

Let % denote Hadamard product, ie., (Ca,X")(Lb,X") =
Ya.b.X". Then
FiX) =

sﬁm
=T =7 =T = ZA = P = A oD

In obtaining the above expression for F{X} an enormous amount
of cancellation takes place. This leads one to suspect that there is
some simpler alternative method for obtaining such results. We do

not, however, know of such a method.

Theorem 4.1 allows us to deduce the linear recurrence (5) which
N(r) satisfies from its generating function P(X)/Q(X). We therefore
ask what other propetties of N(n) can be "‘read off’" from P(X)/ Q(X).
A simple and elegant result along these lines has been given by
Popoviciu [30] (cf. also [12], [41]). If we are given a function N: N
— € satisfying a recurrence (5), then clearly there is a unique way
of extending N to all of Z (the integers) such that (5) holds for all
n € Z. Popoviciu's theorem relates the functions N(n) and N(—n).
It is easily proved, e.g., by partial fractions.

4.4 TueoreMm: Let N: Z — C satisfy (3) for ali n € Z. Define

]

EX)= |=2¢:N._. X)) = m N{—m)X",

n= n=1
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Then F(X) and F(X) are rational functio fsfvi =
{ . X fy (
T ns of X satis g Mu&

POLYNOMIALS

As important class of functions satisfying a recurrence (5) are

the polynomials. In fact, we have the fi i
Thoaotynom e following corollary to

4.5 CoroLLARY: The followin iti ]
: g conditions on :
— Care equivalent: ¢ fumction N: N

(D L NmXm = PX)/(1 — Xy, - (10

“bﬂwm P(X) is a polynomial in X of degree at most d such that P(1)

(i) For nh:.w 0,
o fd+1

while for some n = ()

]

4 d
_.u.m= (— :ALZS + i = 0.
(iii) N(n) is a polynomial in n of degree d. ]

When a polynomial N(n) arises combinatori
. . torially, frequently the
namwmn_mgnﬁ of P(X} (given by (10)) have a combinatorial signifi-
cance. Moreover, Theorem 4.4 may give useful inf i
P(X) via the following corollary: rmation about

4.6. CoroLLARY: Let N: Z — C Fe q polynomial of degree d,
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and let ¥ N@m)X" = P(X)/(1 — Xy, where P(X) = a0 + &, X
n=0

con FoagXe.
+(i) Deﬁn: r to be the greatest integer such that N0y = N({1) =
e =NRY=0. (IFNQO) # 0, letr = —1)Ifr # —1,thenris
the greatest integer such that ao [= a;f= .v- = a, = 0. Moreover,
r + 1) = a.+, whatever the value of r.
N((ii) Dt)aﬁne s to be the greatest integer such that N(—1) = N(—2)
= ... = N(—s) = 0. JFN(—1) # 0,lets = 0.)If s ¢ 0, then
s is the greatest integer such that az = @41 = ==+ = d—s+1 = 0.
Moreover, N(—s — 1) = (—1)4aq—; whatever the value ofs.d .
(iii) Let r and s be given by (i) and (ii). Then P(X) = Xd+itr—s
P(1/X) if and only if N(n) = (—1)*N{r — s — n)foralln € Z.
(iv) The leading coefficient of N(n) is P(1)/d.0Od

PARTITIONS AND PERMUTATIONS

The -theory of partitions is a highly develope'd, elegar}t, and
extensive branch of combinatorics. It otiginated with Euler in 1748
and has occupied the attention of many eminent researchers, such
as Jacobi, Sylvester, Hardy and Littlewood, and MacMahon. For an
introduction to this subject, see for example [20, Ch. 19}, [4, Chs.
12-141, [1], [5], [44). Generating functions have proved to be an
invaluable tool in the study of partitions. We have space here' to
consider only a very small part of the subject, one in .\-Nthh
rational generating functions play an importa.nt role, This is the
subject of P-partitions, various aspects of which were conmd‘ered
by MacMahon, Bender, Knuth, Gordon, Kreweras, E. M. Wright,

- and others, with a general development first apPea_ring in [37]. _
Let P be a finite partially ordered set of cardinality p. A P-parti-'

tion of n € N is an order-reversing map o: P — N satisfying .\'{:.P o{x)

= u. The statement that a is order-reversing means o{x) = o(y)
when x = y in P. We say that o is strict if o(x) > aly) wh.e.n x<y
in P. If for instance P is a p-element chain, then a P-partition of
is equivalent to an ordinary partition of « into at mosjc ,.p.parts,. as
defined in Section 1. If on the other extreme P is a disjoint union
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of p points, then a P-partitioh of n is equivalent to a composition
(ordered partition) of # into p parts, allowing 0 as a part,
Define the following combinatorial concepts associated with P:

a(n) = number of P-partitions of n ¢ N.
d(n) = number of strict P-partitions of r € N.

FX) = gﬂ atw)Xr, FX) = éﬂ (X,

Q(m) = number of P-partitions g: P — [m].
Q(m) = number of strict P-partitions o: P — [m].
e, = number of surjective P-partitions P — [s].
& = number of surjective strict P-partitions P — [s].

It is easily seen that if p = 1, then

Qm) = E e (m) Qlm) = E e‘,(m) \
=1 s s=1 5

so Q(rm) and Q(m) are polynomials in m of degree p and leading
coefficient e, /p!. .

We shall now establish the connection between P-partitions and
permutations. Let w: P — [p] be a fixed order-preserving bijection
(so x = y in P implies w(x} < w(y)). Define the JH-set £ of P to be
the set of all permutations = = (a), a3, ..., a) of (1,2, ..., p
such that if x < y in P, then w{x) precedes (v} in 7. (The reason
for this terminology appears in [38].) Hence £ contains a total of
¢, permutations. If # = (ay, a, ..., a,) is any permutation of (1,
2, ..., p), adescent is a pair (a. ai+,) such that a; > di+1, while an
ascent is such a pair with a; < a+1. Let a(x) (respectively a(w)) be
the number of descents (respectively, ascents) of the permutation .
Clearly o{n) + al(x} = p — 1. The greater index {7) of x is de-
fined by '

L(?I') = E{] a; > aj+l}-

Similarly, the lesser index i(x) is defined by

r) = L{j: a; < ajni}.
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Hence (x) + dx) = (£ ). (See [28, Section 104].)
2 ,

We now state without proof some fundamental results concern-
ing P-partitions. Proofs of more general results may be found in
[37], especially Corollary 7.2 and Propesition 13.3.

4.7. ProrosiTion: (i) F(X) and F (X) are rational functions of
X given explicitly by

FX)=(L X")/(1-X)1 —-Xy---{1~— Xr).

xel
FiX) = A:mhk,.:_v\: -X){1—X)---(1— X
(i) We have

mc Q)X = (X- L X1 — X)rHh,

L

Q)X = (X- £ X*V(1 — X)»*.0

0 el

-1

m

Using the formulas afx) + alw) = p — 1, x) + ix) = @v.

Theorem 4.4, and the definition of £, we can obtain many mnterest-
ing corollaries to Proposition 4.7, a sample of which are contained

in the following:

4.8. COROLLARY:

() XrF(X) = (—1)F(1/X).

(i) Qm) = (—1)?Y —m).

(iii) Let F(X) = w4 — X000 — X3 --- (1 — Xr). Then
W(X) is @ monic polynomial with nonnegative integer coefficients
of degree @V - km_. 8(x), where 8(x) is the length of the longest chain
of P with bottom x. Moreover, W(0) = 1 and W(1} = e,.

(iv) Let d = deg W(X). Then W(X) = X¢W(1/X) if and only if
for each x € P, every maximal chain of the sub-partially ordered
set {y:y = x} has the same length I = I(x).

4‘
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4.9. Example: Let (P, w) be given by

S
3 4
1 2
Then £ is given by:
T alm}  alm) () i)
1 2 3 4 5 0 4 0 10
2 1 3 4 5 1 3 1 9
1 2 4 3 5 1 3 3 7
i 2 3 5 4 1 3 4 6
2 4 1 3 5 1 3 2 8
2 1 4 3 5 2 2 4 6
2. 1 3 5 4 2 2 5 5
Hence

FX)=(1+X+X 4+ X+ 2X' + X5/
1-X0-x)- .11~ X%,

FX) =X+ 22X+ X + X° + X° + Xy
IT—X01—-X).-- (1 — X9,

L Qo)X = (X + 4X2 + 2X5%/(1 — X,

m={

Mabﬁzvks =(2X + 4X* + X7/ (1 — X,

=

e
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4.10. Example: Suppose P is a disjoint union of p points. Then
it can be seen directly that

m) = Q(m) = m?,
FX)=FX)=1/(1 — X¥.

Moreover, £ consists of all p! permutations of_ tp], and .Proposp
tion 5.3 reduces to classical results on permutations. For }nstance,
the total number of permutations of [p] with s descents is known
as an Eulerian number, denoted by Knuth [26, Vol. 3, 5.1.3] as

p > . Proposition 4.7 implies the well-known resuit (e.g., [33,
s+ 1
pp. 38-39], [26, Vol. 3, 5.1.3, Eq. 8], [10, Ch. 6.5])

L moXm = ( §;<i’> X)/(l — X,
m=0 =

Similarly Proposition 4.7 implies that

FXO =G+ X1 FX+X) A +X+X+ - X,

x

where tﬁe sum is over all permutations = of {p]. This remarkable
formula is due to MacMahon [27] {26, Vol. 3, 5.1.1].

4.11. Example: Let P = C,, a p-element chain. Then £ con-
sists of the single permutation (1, 2, ..., p), and

o= (7). ().

O —xa -5 —x
/(1= XHL = X - (1 = X7).

Fx)=X
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The formulas for Q(m) and (T(m)_are simply the fundamental ex-
pressions for counting combinations with or without repetition,
while the formulas for ¥(X) and F(X) are basic identities in the

-theory of partitions.

4.12. Example: Let P = C, X C,, a direct (cartesian) product
of two chains of cardinalities r and s, where say r < 5. It is by no
means a priori evident that explicit expressions can be given for
(rn) and F(X), but such is indeed the case. Namely,

Creyryaen e oy
O

FX) = 1/()2PBP --- (eye + 1y - --
(s¥(s+ 1y s+2y2 oo r + s — 1),

where (k) = 1 — x*. These remarkable formulas belong to the
fascinating subject of plane partitions and are intimately connected
with symmetric functions and the representation theory of the
symmettic group. For further information, see [36].

The myriad possibilities for modifying or extending the theory of
P-partitions remains largely unexplored. As a modest example of
what can be done in this direction, we state without proof the fol-
lowing recent result [45).

Let Q; be the set of all sequences r = (a,, a3, ..., az) such that
each integer / € [p] appears exactly twice, and such that if i < j=<
k anda; = ay, then a; > a;. It is easily seen that Q, has cardinality
1-3-5---2p — 1). Adescent of 7 € O, is a pair (a;, @i+,) with
@ > @+ (1 =i s 2p — 1). Let s(n, k) and S(n, k) denote the
Stirling numbers of first and second kinds, respectively. (For a dis-
cussion of these numbers, see for example {10, Ch. V].)
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4.13. PropositioN: We have the identities
E] Sn -+ p.n)X* = (:ZI B,,.,-X)/(l — Xyrtl
and
{(—1y nél s(n + p. WX = (él Bp—s+|.aX)/(1 - X)z‘”'.,

where B,.. is equal to the number of sequences @ € By.i with exactly
i — 1 descents. [

i i = itting superfluous
For instance, if p 2 then we have {omi
parentheses and commas) Q; = {1122, 1221, 2211}. Hence

e)él St + 2, X" = (X + 2XH/(0 — XP
and
21 sin + 2, 0)X" = (2X + X3)/(1 — X7,
agreeing with the known results
ot 20 =(1 5242 12)

and

s(r:+2,fl)=2(n:3)+ ("1_2) :

V. ALGEBRAIC FUNCTIONS

The elements F(X) of C[{X]] of the next “level of complexity”
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after the rational functions are the algebraic functions. By defini-
tion, Y = F(X) is an algebrajc function (over C) if there exist poly-
nomials Po(X), Pi(X), ..., P«X) € C[X] such that

Po(X) + PIX)Y + -+« + PAX)Y? = Q, ' (11)

as an element of C[[X]]. The least possible d for which (11) holds
is the degree of Y. If Y satisfies (11), then ¥ has degree d if and
oaly if P/(X) # 0 and P«X) + P(X)Y + --. + P XYY is irre-
ducible, considered as a polynomial in Y over the field Cx).

The theory of algebraic functions has been extensively developed,
but most of the results have no direct application to problems of
enumeration. We shall discuss some results which do apply to
enumeration and give several examples to indicate how algebraic
functions actually arise in enumeration problems.

5.1. TueoreM (Comtet [9]); Let ¥ = F(X) be an algebraic

Junction of degree d, given by F(X) = gﬂ N(mu)X". Then there exists

a positive integer q and polynomials py(n), pin), . ... Pqln), such
that p,(n) # 0, deg pn) < d, and for all n sufficiently large,

PmIN(n + q) + py— (mIN(n + g— 1+ -+ py(n)NG) = 0.
(12)

Sketch of proof (a streamlined version of Comtet’s proof):

Let Y satisfy (11). By differentiating (11) repeatedly with respect
to X and using induction, we get that Y™ == g ¥/ /dX* is a rational
function Ry(X, Y)of X and Y for all k = 0. Since Y is algebraic of
degree d over C(X), the functions 1, Y™ = Y, YU ., Yd-1 gpe
linearly dependent over C(X). Write this dependence relation,
clear denominators so the coefficient of each Y™ is a polynomial in
X, expand each Y as a power series in X, and equate coefficients
of X" on both sides of the dependence relation to get the desired
result.

e
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5.2. Example: Suppose 2Y? — (1 + X)Y + X = 0, where Y
= T N@X~. Then ¥' = (¥ — 1/(4Y = 1 = X) and
Yyer—e6X+ 10— X -—-3Ir+ X -1 =0,
from which we get
(n -+ 2N+ 2)—32n -+ 1N#n + 1)

+n— 1Nn)=0,n = 1.

E  N(m nYrZr €

0 n=0

18

5.3. Tugorem: Let F(Y, Z) =

m

Cl[Y. Z]}. The diagonal DAX) of F(Y, Z) is the series Mo N, n)X7

¢ CIIX1]. If F(Y. Z) is a rational function of Y and Z, then D(X)
is an algebraic function of X.

Sketch of proof: Regard F(Y, Z) and DHX) as functions of the
complex variables X, Y, Z. It is easily seen that F(Y. ZY and DAX)
converge for X, Y. Z sufficiently small in absolute value {when Fis
rational). Let C be any sufficiently small circle about the origin in
the complex s-plane. We then have for ali X sufficiently small

(depending on () in absolute value,

D) = = [ Fis, X75) %.
[

2w

(Cf. 125, Theorem 1] for a rigorous justification of this “formal
identity”".) By the residue theorem, D«(X) is equal to the sum of
the residues at those poles s = s(X) satisfyings — 0 as X — 0. To
compute these residues, write F{s. X/5) = P(s)/Q(s), where P(s)
and Q(s) are polynomials in s with coefficients in C|X]. Then the
roots of Q(s) are algebraic functions of X. Thus the poles of Fis.
X/s) are algebraic functions of X. so the residues at these poles
will be rational combinations of these algebraic functions and
hence themselves algebraic. From this the proof follows.L]
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5.4. Example: _Let § be a subset of N X N such that (0 0) ¢
S. .Hmﬁ Ns{(m. 1) be the number of ways the vector (m, n) ow: be
written as a sum of vectors belonging to §. The order of
summands is taken into account, so for example if

;M. = *AM- cv- ﬁ—~ Hv- AO. .—.vwc
then Ns(1, 1) = 3, corresponding to (1, 0) + (0, 1
¥ i) ’ H] Ou
(1, 0), and (1, 1). Define O D00+

F(Y,ZYy= ¢ ¢ Nsim, n)Ymzn,

m=0n=0

It is easily seen that

(.f)ES

FAY, mvn:m_| > w..mﬁ.v.

Hence if S is finite, F5(Y, Z) is a rational funct]
. . tion of ¥
from Theorem 5.3 we obtain: ° and 2, so

5.5. TheEorEM: Let § be a finite subset of N X N with (0,00 ¢
S. Define _

Gs(X) = E Ni(n. nx".

Then G5(X) is an algebraic function of X. and hence (by Theorem

5.1 1 1
?__..MM.,mH. n) satisfies a recursion of the form (12) for n sufficiently

For an explicit example, take § = {(0, 1), (1, 0), (1
; ! ' ] L] ¥ M -
F{(Y,2)=1/(1 — Y — Z — ¥Z) and ). (1, 1)} . Then

Gs(X) = Nuz. = &x
s ~Iu||ikv

5

— 1 ds
27i sS+X—-1s+X
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The only pole s of the integrand satisfying s — 0 as X — 0 occurs
for

s =

1I—X—-~N1—-6X+X
2

The residue at this pole is

Gs(X) = (1 — 6X + X))
For further information on this special case, see [10, Ch. 1, Ex.
211.

it is not necessary for § to be finite in order for F5(Y, Z) to be
rational. For instance, if § = N X N — {(0, 0}}, then

_ _ 1 _
F{Y. 2) = :T A: =D _uv

and we obtain

Gs(X) = wumc Ns(n. )X = %[t + (1 — 12X + 4X?)7“].

There is one remaining theorem concerning algebraic functions
which is useful in enumeration problems. This is the Lagrange in-
version formula. Lagrange's formula allows in certain cases an
explicit determination of the coefficients of a power series defined
by a functional equation, such as an algebraic function. Lagrange’s
formula is normally stated for analytic functions (e.g., [43, p.
132]), but we shall state a special case valid for formal power
series {cf., e.g., [31, Section 5]). We shall use notation from the

calculus in a formal way. For instance, if F(X) = mc N()X", then

F(0) = N(O), F'(0) = N(1),

dE/dXE = ma (n + 1)Xn + 2)N{n + 2)X", etc.

414‘
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5.6. THEOREM: Let ®(X) € C[[X]]. There is ) _
€ Ci[X]] such that a uniqgue Y = Y(X)

=X o (13)

(Note that :3. computation of $(¥) does not involve questions of
convergence, since from (13) Y(0) = 0 and therefore the coefficient

of X* in the expansion of ®(¥) is given by a finit
€ ClIX]]. Then ¥ e sum.) Let F(X)

F(Y) = Fo) + ¢ &%

=1 1l

.
where

n&:l_
@n = i W (X)$X) |x=0.0]

w.w\.:mﬁa_u_a Let Y = X + ¥ + ¥3, with Y(0) = 0. Thus ¥
=X/(1 = Y ~ Y2, If we let ®(X) = 1/(1 — X — X2
= X, then we have A A7) and B0

=l Rl

. = xX» dn—\ .
Y = L I{.—” dXr—1 A_. - X - ..N.mvl_._H—

x=0-

a=0

Now, {1l — X - "= T Ve
ow, ( un X% MA#VAIC\AXI_.XM%. Hence if ¥

= =m_ N(n)X", then we easily obtain

Nin) = T A=+n+®!:_.
n+.w.ﬁ_=‘|_ nlalb!

(14)

We n.onn_cam this section with an example which is a prototype
Fa a wide class of results dealing with planar maps, parenthesiza-
tion, trees, formal languages, and related topics.

R
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5.8. Example: Let § © P — {1, 2}. Let tha.cn the ::chn. of
ways of dividing a convex (n + 1)-gon C mio regions R by Q..ms_ﬂm
diagonals not intersecting in the interior of C, such that .H e
number of sides of each region R belongs #.o S. By no:éa.:.E.
N(®) = 0, N(1) = 1. Fix an edge E of C. Given a decomposition
of C enumerated by Ns(n), let k be the number cm.mnmmm of the
region containing E. If we remove E from C, we obtain k — 1 new
decomposed polygons Ci, ..., Ci—1. If e(K) denotes one less ::H_
the number of edges of a polygon K, then e(C) = e(Ci} + ---
e(Cx-1). Hence

= Ns(bi} -+ Ns(be—y), n=2. (15)
Ns(n) »Wum _._._+_..M.M_“.H|_u= (b1} s

Let Y = Fs(X) = m Ns(n)X". Then (15) ﬁm_nm
. n=1

Y=X+ L r (16)

kes

Under certain circumstances ¥ will be algebraic, m._m.a._ when S is
i i i i be applied.

finite, and previous results of this section can ie .
Suppose, for instance, § = {k}, k = 3. Thus, ¥ = X + Y*L

Theorem 5.6 can be used to show

0,iftk — Dfn — 1),

(1
n

Ns(n) =

The simple form of this answer suggests that a combinatorial proof
might be possible. The expression

1 A: + av
nte\
is equal to the number of circular permutations of n _.mn.v.mmam and
¢ white beads, since (n, £) = 1. Thus, we seek an explicit one-to-
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one correspondence between these circular permutations and the
appropriate divisions of a polygon. Such one-to-one correspondences
have been described by Raney [31], Tamari {42], and others.
These authors prove more generally that the number L{n} of ways
of dividing an (n + 1)-gon with d diagonals to form g tegions with
i+ 1sides(sod +1=Xaq;andn — 1 = (i — Da) is equal to

L{n} = (n + d)V/n! (a). (17

This tesult was first proved by Etherington and Erdelyi [13] using
generating functions. If for example we take @; = a, a; = b, and
all other a; = 0, we can deduce (14) putely combinatorially. More
generally, Raney [31] has shown that (17) is sufficiently general to
yield a purely combinatorial proof of Theorem 5.6.

The function Y of (16) can be algebraic without § being finite,
For instance, take § = {3, 4,5, ...}, so Ns(n) is equal to the
total number of ways of dividing an (» + 1)-gon by diagonals not
intersecting in the interior. This is the “second problem of Schréder™
[35]. By (16), we have

H\.N
1-¥"

Y=x+Erei=x+
s02Y? — (1 + X)Y + X = 0. This gives
wuw: + X —(1 — 6X + x).

This power series Y was the one considered in Example 5.2, so we
get

(n + DNs(n + 2)—32n + D)Ns(n + 1) + (n — 1INs{n) = 0,

n =1,

as first observed by Comtet [10, p. 57]. (Comtet’s formula has a
misprint.)

For excellent bibliographies of the many variations of Example
5.8, see [2], [8], or [17]. For the problem of asymptotically esti-

e
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mating the coefficients of an algebraic function, and of asymptotic
estimates in general as applied to enumeration, see for example
[6]. Finally, we mention that a simpler approach than ours for
handling certain types of algebraic functions appeats in [26, Vol.
1, Section 2.2.1, Exercises 4 and 11], especially pages 532-534.

V1. THE EXPONENTIAL FORMULA

We wish to explain the ubiquitous appearance in combinatorial
enumeration problems of the exponential function. In Section 3 we
saw that the exponential function is associated with the incidence
algebra of the lattice of finite subsets of N; however, there are
many occurrences of the exponential function in combinatorics
which cannot be explained in this manner. We will present a
general result (Corollary 6.2), which we call the ‘“‘exponential
formula for r-partitions”, which leads to a plethora of generating
functions involving the exponential function. Although an even
more general exponential formula can be given, for simplicity’s
sake we will restrict ourselves to r-partitions. There are many
different approaches to deriving the exponential formula; we
choose one which seems to involve the least preparation. A wide
variety of examples and special cases will be discussed.

Let S be a finite set with n elements. Recall that a partition of §
is a collection 7 = {Bi, Bz, ..., By} of non-empty pairwise
disjoint subsets B; of § whose union is S. We say that x is of type
(a1, a2, ..., an) if exactly a; of the B/’s have i elements. Thus Lia;
= 5 and La; = k. We call the subsets B; the blocks of 7 and say
that 7 has k blocks, denoted | 7] = k. The number of partitions
of § with k blocks is the Stirling number S(r, k) of the second
kind, while the total number of partitions of § is the Bell number
B(n) (see, e.g., [10, Ch. V]). Let I1, denote the set of all partitions
of[n] =1{1,2, ..., n}.

More generally, if r is a fixed positive integer and if § is an n-
element set, define an r-partition of § to be a set

x={(Bu,Bu, ..., Bui),(Bu, Bn, .. «+B2), ..., (Bu, Bz, . - -, Bu)}

satisfying:
(i) For eachj € Irl, the set =; = {By;, By, ..., By} forms a

Y__——“
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partition of § into & blocks. Thus each B;; is a nonvoid subset of §
the k sets By, ..., By are pairwise disjoint, and U B; = 5. ’

(il) Forﬁxedi. ‘B.‘]I = |B,“)_I = e = !B I. l .

It follows that the r partitions =y, ..., =, all have the same type

(a1, a2, ..., a,), which we call the

s ), type of w. We also say that
has {c.blocks, denoted | 7| = k. We let II.. denote the set of all :
partitions of [#], so I1,, = I1,.

6.1. TucoreM (the convolutional f
, ormwla for r-partitions):
Let f: P — Cand g: P — C. Define a new function h: I’p—- C by'S).

h(n) = E f(1)% fQ) -« fln)wg(|x)),

where w ranges over all r-partitions of [n], and where 7 has type

(@, @2, ..., ay). Define th ;
C{IXT] by fi e power series F(X), G(X), H(X) ¢

FX) = £ fimXr/nY, G(X) = ;Eg(n)X”/n!,
H(X) = %h(n)xwr.

Then H(X) = G(F(X)).

Proof: We have

GF(X)) = k);-l glk) L:l_fl f(i)X"/iI*]k/kl

— Eg(k) f(bl)f(bz)..l.f(bk)
k=1 k! Bl bV - bRl Xpi+ir+ -t

where the inner sum is over alf k-tuples (b, ..., k) ¢ P*. Let a; be

the number of b;'s which are e 1
_ qual to i, so that k = Za;
= Eb; = Lia;. We obtain La;; and let n
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_m X nlrefa;, ..., ) a ... .
GEX) = T~ T gio - atenr/ (D7 - Sy 80,

where the inner sum is over all solutions in non-negative integers a;

to n = Yia, where k = La;, and where ofay, ..., aa) is the
number of distinct k-tuples (b1, ..., bi) with exactly a; of the b;’s
equal to i. Cleatly alai, ..., 4.} is the multinomial coefficient

kl/ala;! - - - a,1. Hence

GF(X)) =

. nlr
L E =
a=1 R (119 .o- plom)r gyl .-

| S - Sl g B

It is easily proved that the number of r-partitions of [=] of type (a:,
.., @) is just rt7/(11% -« nlom) aqd - - a,l. From this the proof

fotlows.[

6.2. CoroLLARY (the exponential formula for r-partitions):
It Theorem 6.1, let g(n) = 1 for all n € P. Then

1 + H(X) = exp F(X).O

Mote sophisticated approaches to Theorem 6.1 and Corollary
6.2 are given in {15, Ch. 1111, [14], (11, Thm. 5.1, and (7, $§31.
"The first three of these references treat only the case r = 1, and
our viewpoint most closely follows [11]. The prefab theory of [7]
gives more general results than Corollary 6.2, though it is possible
to extend Theorem 6.1, in a manner analogous to our treatment of
binomial posets in Section 3, so that it achieves the same level of
generality as the treatment in [7].

We conclude this section with a number of applications of

Theorem 6.1 and Corollary 6.2.

6.3. Example: If we set f(n) = Y for all n € P in Coroilary 6.2,
then it(n) = ES,(n. k)Y*, where §,(n, k) is the number of r-patti-

tions of [#] into k blocks. Hence from Corollary 6.2 we obtain
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1+ L k-§l 3:(n, K)X"Y*/n\" = exp Y L Xv/nl.

In particular (putting ¥ = 1),

1+ 213 Tl - X"/nl" = exp gl Xo/nf.

When r = 1, §,(n, k) becomes the Stirling

= 1, $:{n, g number S(n, k) of the
second kind, and |IL.| becomes the Bell number B(n). We tecover
the well-known results (see, e.g., {10, Ch. V]) :

1+ nEI ‘EE‘ S(n, K)X"Y*/n! = exp Y(eX — 1),
i1+ n§1 B(n)X"/n! = exp (¢ — 1).

.6.4. Example: Let flu) be the number of connected graphs
(without loops or multiple edges) on the vertex set [r], and let A(n
k) be the total number of graphs on [r] with & connected com:
pom?n_ts. A graph with & components can be obtained uniquely by
partitioning [nr] into k& blocks and “attaching” a connected graph
to each block. If a block B has i elements, then there are JU) con-
nected graphs which can be placed on B. Hence

Eh(nr k)Yt = 15]"f(1)“1 . .f(n)n,'g Yait--+an

where in the latter sum = has type (ay, a3, ..., a,). From Coroll
0.2 {with r = 1) we obtain o

1+ ,.Eu hEl h(n, E)X"¥*/nl =exp Y - lEf(n).’("/:r:l.

Cle:.irly there are a total of 2'?° graphs on the vertex set [n]. Hence
setting ¥ = 1 in the above formula, we get
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L 2(2) X/nl = exp Ei fin)X/nt. (18)

Note that the above power series has zero radius of convergence,
but this need not be a cause of concern since (18) is a formal
power series identity.

Example 6.4 is the archetypal application of the exponential
formula in the case »r = 1. Whenever we have some strucfure on
[n] which is “‘pieced together” from iis connected components, we
obtain a formula analogous to (18). For instance, instead of
graphs we could equally well have used partial orders, topologies,
diagraphs, etc. :

6.5. Example: Let A(n) be the number of graphs G on the
vertex set [#], such that every component of G is a cycle (of length
= 3), an edge, or a single vertex. There are (i — 1)1/2 cycles on an
j-element set, i = 3. (Of course we mean an undirected cycle; there
are (i — 1) directed cycles.) Moreover, there is one two-vertex
graph with an edge, and only one single-vertex graph. Hence from
Corollary 6.2 (with r = 1) we get

i Xt [ . ¢
n/yl = Pallal ~ T
1 Il:h(n)X /nl = exp [X + > -+ 3 %3 7 :|
= exp [—-2 + s —; log(1l — X)]

= (1 — X) " exp (% + -T—)

The=function h{n) has several other interesting combinatorial inter-
pretations, €.8., (a) the number of distinct matrices of the form P
4 P-), where Pis ann X n permutation matrix, and (b) the number
of distinct monomials appearing in the expansion of the deter-
minant of an r X n symmetric matrix whose entries x;; are inde-
pendent indeterminates (except x; = x;). For a modification of
this result, see [10, Ch. 7.3].
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!5.6. Example: Suppose we have a room of n children. The
Fhlldren gather into circles by holding hands, and one child stands
in Ithe center of each circle. A circle may consist of as little as one
chfld (clasping his or her hands), but each circle must contain a
child inside it. In how many ways can this be done? Let this
number be i(n). An aliowed arrangement of children is obtained
by choosing a partition of the children, choosing a child ¢ from
each block B to be in the center of a circle, and arranging the
other children in the block B in a circle about c. If [B| = i » 2
then there are / - (f — 2)! ways to do this, while there are no way;
ifi = 1, Hence '

1+ BhoX/n!l = exp E_*L!_?)'l
2 z

_ - X
= eprr_El_i—- =(1 - X)*

The astute reader has undoubtedly realized by now that this
e.xample was contrived solely to obtain the curious answer. With a
little practice such generating functions can be quickly computed
in one's head. :

6.7. Example: Let &, denote the group of all permutations of
[u']. For fixed m € P, let h(n) denote the number of p € &, satis-
fying o™ = 1. Such a p can be obtained by partitioning [1] into
blocks B whose cardinality d divides m, and then choosing a eyelic
permutation of B. Such a cyclic permutation can be chosen in
(d — 1) ways. Hence

1+ ¢ - (d — Dix?
R h(n)X"/n! expdli;"——m-__d!

X4,
AT
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More generally, the coefficient of Y% Y2% -+« Y, X"/n! in exp

E:l Y; X!/iis equal to the number of p € &, with exactly a; cycles of

length i. This well-known result (e.g., [33]) is equivalent to
Corollary 6.2 in the case r == 1.

6.8. Example: Let #(n) be the number of rooted trees (connected
acyclic graphs with a distinguished vertex) on the vertex set [n],
and let f{n) be the number of rooted forests (graphs whose
components are tooted trees) on [#]. The reader who bas come this
far will instantaneously see that

1+ E flmkv/nl = exp I Hm)X"/nl. (19)

On the other hand, any tree on [z + 1] gives rise to a rooted forest
on [z] by removing the vertex n + 1 and all incident edges, and
putting roots at the vertices adjacent to n + 1. Since there are n
+ 1 ways of rooting a tree on [n + 1], we get (n + 1}An) = tn

=+ 1). Setting T(X) = §1 t{n)X"/n!, equation (19) results in the

famous functional equation T{X) = X - exp T(X). Using the
Lagrange inversion formula (Theorem 5.6), one easily deduces that
t(n) = n*"1. For further information on this result, including
direct combinatorial proofs, see [29].

6.9. Example: Let i(n) be the number of idempotent functions
B:[n] - [n], i-e., BB() = B() for all i € {n]. A function B:[n] —
[n] is idempotent if and only if for each i € [r}], the set §7'(@) is
empty or contains /. Hence we obtain an idempotent function by
partitioning [~} and mapping each element of a block B to a fixed
element x of that block. If | B| = { then there are ¢ choices for x.
Thus

1+ ?h(u}X"/n! = exp Il) X/l

(20)
= exp Xe'.
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_For fur?her information on h(n), see [21]. The reader ﬁay find it
mt'eres_tmg to generalize (20)'in various ways. For instance, given 1
s { < j, how many functions g:[n] — [n] satisfy @ = g9

6.10._ Example: Fix s > 0. Let £(n) be the number of sequences
Py P2y oo ey s of s permutations in the symmetric group &, on [n]
which generate a transitive subgtoup of &,. There ate nk
sequences py, pz, ..., p, With no assumptions on transitivity. Given
any such sequence, the orbits of the group generated by py, p;
-+ 0s form a partition of [»]. Given a partition x of [n] of ,typt;

Ay, az, ..., a,), the number of sequences p, gz, ..., p, with orbit

partition = is clearly £,(1)* f(2)% - . . fi(n)=. Hence
nk = E £ filnpm,

so by Corollary 6.2 (with r = 1),

1+ )lln!’X"/n! ‘—'203 ntiXe = exp Zl:ﬁ(n)X"/n!

Now let F; be the free group on generators x,, Xz, ...y X Let G be
a subgroup of F; of index n. Let Gy, G, ..., G, be an crdering
(out of the (n — 1)! possible orderings) of the cosets of G not
equal to G. Let G = G.. Define permutations py, ps, ... ps in &

by x;G; = G,,». It is easily seen that Py P2,y -ouy ps g:an;rate' ::
transitive subgroup of &, . It follows from the theory of free groups
fe.g‘.,.[l‘), Theorem 7.2.7]) that the map (,, G) — (o, 02, ..., 0s)
is a bijection between (a) pairs (., G), where G is a subgroup c;f F,
of index » and  is an ordering of the n — 1 proper cosets of G

and (b) sequences (o1, ..., p,) € &,° whose elements generate a't
transitive subgroup of &,. Thus if Ni(n) denotes the number of sub-
groups of F; of index n, then N,(n) = f{n}/(n — 1)! and

ngl nb1X" = exp ,El N.(X/n. 21

A recursion equivalent to (21) appears in [19, Theorem 7.2.9].
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From (21) E. Bender [6, §5] has derived an asymptotic expansion
for N,(n) for fixed s.

6.11. Example: Let n € P and s € N, and let (. 5) denote the
set of all # X n matrices of nonnegative integers for which every
row and column sums to s. Let M € 9M(n, s). We regard the rows
and columns of M as being indexed by [n]; i.e., M = (my), where
(i, /) € [n] X [n). By a k-component of M, we mean a pair (4. B)
of subsets of [#] satisfying the following two properties: :

W |[A| =Bl =k=1,

(ii) Let M(A, B) be the k X k submatrix of M whose rows are
indexed by A and whose columns are indexed by B, ie., M(A. B}
= (m;), where (i, j) € A X B. Then every row and column of
M(A, B) sums to s, i.e., M{(A, B) € Mik. s).

A component (4, B) is irreducible if any component (4°, B'}
with A" C A and B' C B satisfies (A", B') = (A, B). For
instance, ({i}, {/}) is a l-component (in which case it is
irreducible) if and only if m;; = 5. It is easily seen that the irreduc-
ible components of M form a 2-partition of frn]. Conversely, any
matrix M € M(n. 5) can be obtained by choosing a 2-partition = of
[1] and “attaching” an irreducible component to each (4, B) ¢ =,
Let ifai, ..., a.) denote the number of matrices M € 9(n. 5) such
that M has a; irreducible i-components {so n = Lia;). Let filn) be
the number of irreducible X n matrices M € M(n. s), i.e., ([nl,
[n]) is an irreducible component of M. It then follows from
Corollary 6.2 that

o
b
]

L hday, ....a)Y " - Yo Xn/nl?

n=0a

(22)

= exp M_”.E:vﬁ_ka\:_w.

MNir 5}, then

In particular, if H(n, 5) =

mIA:. $)X"/nlt = exp m_h?vx,a\z_u.

GENERATING FUNCTIONS 139

mm.B:m:u: let H*(n, s) denote the number of matrices in W(n, s)
with no entry equal to s. Since £,(1) = 1, there follows .

mm*?. s)X°/nl* = exp mn?vk..\___m

=e X mﬁ?. )X /nl2,

1t is not difficult to compute f3(n). Indeed, an irreducible matrix
M m.u_ﬂ?. 2) is of the form P + PQ, where P is a permutation
matrix and Q is a cyclic permutation matrix. There are n! choices
for P and (n — 1)! choices for Q. If n > 1 then P and PQ could
have been chosen in reverse order. Hence f3(1} = 1 and fi(n) =
nli{n — 1)1/2if n > 1. There follows N

r I

n=0a,

on \nmaﬁ—. ey B_-VH\HQ_ ‘e H\anax.:\un_u

Y - n
= exp _NXIT.WN Yo X .
n=| n
In particular,
mﬁ?. 20X/l = (1 — X)=% X2 (23)
mmﬁ?. DX/ = (1 — X)~% e~ %72, (24)

Equations (23) and (24) are due to Anand, Dumir, and Gupta {3]
For additional information about the functions H(n, s), see _nc_.
(10, pp. 124-125]. It appears certain, however, that there are =n_.
.mo:::_mm for H(n, 3) as simple as (23). The reader may find it of
nterest to derive a formula analogous to (23) involving S(n. 2), the
number of symmetric matrices in M(n, 2) (see [18]). o
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