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The Upper Bound Conjecture
‘and Cohen-Macaulay Rings*

By Richard P. Stanley

Let A be a triangulation of a (d — 1)-dimensional sphere with n vertices. The
Upper Bound Conjecture states that the number of i-dimensional faces of A is
less than or equal to a certain explicit number ¢, (n, d). A proof is given of a
more general result. The proof uses the result, proved by G. Reisner, that a
certain commutative ring associated with A is a Cohen-Macaulay ring.

1. Introduction

In this paper we shall show how commutative algebra can be used to obtain
information on the number of faces of a simplicial complex. Our treatment will
be rather sketchy; in a subsequent paper a more comprehensive account will be
given. We begin with the basic terminology and notation and discuss the
historical background of the subject. Next we introduce a commutative ring 4,
associated with a simplicial complex A. We show that A satisfies the so-called
“upper bound conjecture” if 4, is a Cohen-Macaulay ring. A recent result of G.
Reisner gives necessary and sufficient conditions for 4, to be Cohen-Macaulay.
From Reisner’s result we deduce the previously open “upper bound conjecture
for spheres”.

2. Background

The following notation is fixed once and for all. A denotes a simplicial complex
on a finite set V' = {v,, v,,..., v,} of n elements. Hence, A is a collection of
subsets of V" such that (a) if FEA and G C F, then G €A, and (b) {v} €A for all
vE V. The elements of A are called the faces of A. If the largest face of A has d
elements, then we say that A has dimension d — 1 and write’

d =1+ dim A = max|F|.
FeA
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The f-vector of/A is f=(fpfis--->f;_1), where exactly f; faces of A have i + 1
elements. Thus f, = n. Let N denote the non-negative integers, and define a
function H : N—>N as follows:

1 ifm=20
Y a-
H(m)—{Zfi(""l) if m > 0. ()
i=0 i : ,

Hence for m > 0, H(m) is a polynomial function of m of degree d — 1. It
follows from elementary facts concerning generating functions that there exist
integers hg, h,, . . ., h; such that ‘

(1—x)* > H(m)x™ = hy+ hyx + - - - + hyx?, - (2)

m=0

regarded as an identity in the formal power series ring ‘C[[x]] (where C denotes
the complex numbers). It is easily seen that Ay = 1 and A, = (= 1)?(1 — x(Q)),
where x(A) = fy — fi + - - - + (= 1)?7Y,_, is the Euler characteristic of A. We
call (hy, hy, . .., hy) the h-vector of A. _
The primary question to concern us here is the following. Given information
about A, what can be said about the f-vector of A? Frequently the information
about A will be topological in character; we will specify the topological type-ef
the underlying space X = |A| of A (as defined, e.g., in [18, pp. 110~111]), or
equivalently will say that A is a triangulation of X. (Note that we make no
assumptions about the links of faces of A, as is frequently done in combinatorial

topology.)

The upper bound conjecture

Let n > d > 1. Let C(n, d) be the convex hull of any » distinct points on the
“moment curve” (1, 7%, ...,79), —c0 < 1 < 00, in d-space. C(n, d) is called a
cyclic polytope and was first investigated by Carathéodory in 1907. Gale and
Motzkin rediscovered the concept. (See [5, p. 127] for further historical details.)
Let ¢;(n, d) be the number of i-dimensional faces of C(n, d). Motzkin [16]
conjectured (implicitly) that if P is any d-dimensional convex polytope with »
vertices and f; i-dimensional faces, then f; < ¢,(n, d). The reason for this
conjecture is the following. First, it can be shown by the process of “pulling the
vertices” [5, p. 80; 15, Sec. 2.5] that it suffices to assume that P is a simplicial
convex polytope, i.e., every face of P except P itself is a simplex. (Thus the
boundary complex of P is a simplicial complex.) Secondly, it can be shown [5,
Sec. 4.7; 10, Sec. 2.3 (vi)] that C(n, d) is a simplicial convex polytope with

i+1
dimensional face (0 < i < d) of a d-dimensional simplicial convex polytope P

¢;(n, d) =( n ) if 0<i<m~—1, where m = [d/2]. Since each i-

has i + 1 vertices, clearly f,(P) < ( " ) Hence the cyclic polytopes maximize
i+1
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f; when 1 € i < m — 1. Now the Dehn-Sommerville equations [5, Sec. 9.2; 15,
Sec. 2.4] allow us to solve for f,, f .1, ..., f,_, in terms of fo, fi, .. .. fops
when (f,, f15 - - - » f;—1) is the f-vector of a simplicial convex polytope of dimen-
sion d. Thus it is natural to expect that maximizing f, f5, . . ., f,_, simul-
taneously maximizes f,, f,, - - -, f;—;. This is the content of Motzkin’s con-
jecture, known as the upper bound conjecture (UBC) for convex polytopes. After
some special cases of the UBC for convex polytopes were settled by Fieldhouse,
Gale, and Klee, finally in 1970 McMullen [13; 15, Chapter 5] proved Motzkin’s
conjecture. McMullen’s proof used a result of Brugesser and Mani [2] that the
boundary complex of,a simplicial* convex polytope (or any convex polytope) is
“shellable”. -

Let A be the boundary complex of a d-dimensional simplicial convex polytope
with n vertices. It is convenient (and indeed necessary for proofs) to formulate
the UBC for convex polytopes in terms of the h-vector defined by (2) rather
than in terms of the f-vector. It can be shown that the UBC is equivalent to

h,.<(”"d+i'1), 0<i<d | (3)

i

See for example [15, Lemma 14, p. 173], where g{®)(P) is used for our h, ;. In
1964 Klee [9] extended the UBC to arbitrary -manifolds. His conjecture is
equivalent to the following. Let A be a triangulation of a (d — 1)-dimensional
manifold, with f, = n. Then Klee in effect conjectured that (3) holds for A. Thus
for any simplicial complex A of dimension d — 1 with f, = n, we say that the
UBC holds for A if (3) holds for A. The special case of Klee’s conjecture when |A|
is a sphere is known as the UBC for spheres (sometimes called the “UBC for.
simplicial spheres” or the “UBC for spherical polytopes”). Note that it is not a
priori evident that the UBC for spheres is stronger than the UBC for convex
polytopes, i.e., that there is a triangulation A of a sphere which is not the
boundary complex of some simplicial convex polytope. Such triangulations do,
however, exist [15, Sec. 11.5]. Hence the UBC for convex polytopes does not
subsume the UBC for spheres. Moreover, McMullen’s proof of the UBC for
convex polytopes cannot be extended in an obvious way to spheres, since there
are known to be triangulations of spheres which are not shellable. Thus until
now the UBC for spheres has remained open. We shall indicate a proof of the
UBC for various A which include triangulations of spheres, thereby establishing
the UBC for spheres. We will in fact give an even stronger condition on the h’s
than (3).

3. Hilbert functions

_Let A be a simplicial complex on ¥V = { 0, Uy, - . ., U, }, and let K be any field.
Form the polynomial ring R = K[v,, v,, . . ., v,], where the v, are regarded as
independent (commuting) indeterminates. Let I be the homogeneous ideal of R
generated by all square-free monomials o, B, o with {g; .5 0 ) £A.
Let A, = R/I. We wish to obtain mformatlon about the f-vector of A by
studymg algebraic properties of 4,. To do this, we first show that the f-vector of
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A determines the Hilbert function of 4,. Recall that if I is any homogeneous
ideal of R, then A = R/I is a graded ring,

A=Ag+A + A+ -, AACA.,

where A,, is the vector space (over K) of all homogeneous polynomials in A of
degree m (see, e.g., [20, p. 149; 1, p. 106 12 Chapter 4]). The Hilbert function
H : NN of A is defined by

H(m) = dimg4,,

For the sake of completeness we recall two standard results about Hilbert
functions (see, e.g., [1, Chapter 11; 20, p. 247]).

PROPOSITION 3.1. Let I be a homogeneous ideal of R = K[v,, . . ., v,], and let
A = R/I. The Hilbert function H(m) of A is a polynomial function of m for m
sufficiently large. [ This polynomial is called the Hilbert polynomial of A. It agrees
with H(m) for all m sufficiently large.] The Krull dimension dim A of A (i.e., the
length of a longest chain of prime ideals of A, or equivalently the maximum number
- of elements of A which are algebraically independent over K) is one more than the
degree of the Hilbert polynomial of A. W

We now are ready to compute the Hilbert function of 4,.

ProrosITION 3.2. The Hilbert function of A, is the function H(m) of (1).

Proof: Let ¥; be the image of v; under the natural homomorphism R—A4,. A
K-basis for (4,),,, the mth homogeneous part of A4,, consists of all monomials
w = §ipg2- - - g such that degw =m (ie, a; +a,+ - -+ + a,=m) and
supp w €A, where supp w is the support of w, defined by supp w = {v; : a; > 0}.
The only monomial of degree 0 is 1, which has support #. Hence the Hilbert
- function of 4, at m = 01is 1. Moreover, 1 is the only monomial with support 4.
If FEA has i + 1 elements, i > 0, then the number of monomials of degree

“m > 0 with support Fis (m -1 ) Hence the Hilbert function of 4, agrees with '
| : i

H(m) when m > 0, so the proof follows. W
" As an immediate corollary of Propositions 3.1 and 3.2, we get that the Krull
dimension dim 4, of 4,isd = 1 + dim A.

We now require the concept of an “order ideal of monomials.” We say that a
set M of monomials in variables y,, y,, ... is an order ideal of monomials if
whenever w € M and w’ divides w, then w’ € M. For instance, if y2y,y; € M and
if M is an order ideal of monomials, then y?y,, y2ys, ¥, V2V Y5 Y1 V» Y1
Y3 Y2Yu Y1, Y2 V3 1€ M. The next proposition is essentially due to Macaulay
(11].

PROPOSITION 3.2. Let R = K [v), . .., 0,] as before, let I be any homogeneous
- ideal of R, and let A = R/I. Also let ©;, be the image of v, under the natural
homomorphism R—A. Then one can find a K-basis for A consisting of an order
ideal of monomials in the variables ©,, . . ., ©,.

Sketch of proof: Order all monomials in the variables o, . . . , &, lexicographi-
cally. This means that w < w’ if either (a) deg w < deg w’ or (b) deg w = deg w’
(say w = §{' - - - T W' = ot - - - 0%), and for sufficiently large A (specifically
A > deg w) we have £a,4°7' < Sa/A""1. Define a K-basis b,, b,, ... for 4 as
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follows: (a) b, = 1, (b) once by, . . ., b; are chosen, choose b;,, to be the least
monomial (in the lexicographic ordering we have defined) linearly independent
of b, ..., b. (If no such b, , exists, then the process terminates with b;.) Then it
is straightforward to check that b;, b,, ... is an order ideal of monomials.

We say that a sequence k = (kg, k;, . . .), finite or infinite, of integers is an
O-sequence if there is an order ideal M of monomials such that k;
= |{w€E€ M : deg w = i}|. Proposition 3.2 implies the following corollary.

COROLLARY 3.3. Let I be a homogeneous ideal of R = K|[v,, ..., v,], and let
H(m) be the Hilbert function of R/I. Then (H(0), H(1), .. .) is an O-sequence.
| A ‘

It is natural to ask for a purely combinatorial criterion for a sequence
(kg ky, . . .) to be an O-sequence. This question was essentially answered by
Macaulay [11], with later proofs by Sperner, by Whipple, and most recently by
Clements and Lindstrom [3]. (See also [4, Sec. 7].) We now state this result, in a’
more explicit form than given by the above persons. Recall that if & and i are
positive integers, then 4 can be written uniquely in the form

h___(,:,_)+(in,.__ll)+_.‘. . +('j')

where n; > n,_y > - -+ > n; > j > 1. Following McMullen [14], define

h<i>.___(ni+l)+(ni—l+l)+...+(nj+l)_
i+1 i ‘ j+1

Also define 0 = 0.
PROPOSITION 3.4. A sequence (ky, ky, . . .) of integers is an O-sequence if and
only if kg =1, k, > 0, and for all i > 1 for which k, , is defined we have

0< ki < k. B

4. Cohen-Macaulay rings

We now come to the question of how the Hilbert function of 4 is affected by
additional algebraic conditions on 4. The condition to concern us here will be
that A is a Cohen-Macaulay ring. (Some other conditions are mentioned in [19]
and will be discussed in a subsequent: paper.) We refer the reader to the
literature for the definition of Cohen-Macaulay rings (e.g., [20, p. 396; 8, Sec.
3.1; 12, p. 103]). We will state, however, a characterization (sometimes known as
“Hironaka’s criterion”) of Cohen-Macaulay rings of the type we have been
considering. For further information, see [7, p. 1036). ‘ _
PrOPOSITION 4.1. Let I be a homogeneous ideal of R = K [0 - .., 1,), and let
A = R/I have Krull dimension d. Then A is Cohen-Macaulay if and only if there
exist d-homogeneous elements 8, . . . 8, of A which may be chosen to be of degree
1, if K is infinite, and finitely many homogeneous elements My ...,m, of A, such
that every y € A can be written uniquely in the form y = Z'._ a.p,(8,, . ..., ,),
where pi(x,...,x;)) € K[x,...,x;] W ‘
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Remark: Even if A isn’t Cohen-Macaulay in Proposition 4.1, we can always
" find algebraically independent elements ,, . . ., 8, (which may be chosen to be
homogeneous of degree 1 if K is infinite) and finitely many homogeneous
elements 7,, ..., 7, such that every y € 4 can be written in the form y
= 3Znp,8, ....0,). The 8’s are called a sequence of parameters, and their
existence is guaranteed by the Noether normalization lemma. The crucial
property which makes 4 Cohen-Macaulay is that the 5’s can be chosen so that
the above representation is unique for all y € A. For the remainder of this
section we assume that X is infinite. ‘

Suppose that 4 = R/ I (as in Proposition 4.1) is Cohen-Macaulay, and let
0,...,0,m,...,7n be the elements of 4 whose existence is guaranteed by
Proposition 4.1. Then a K-basis for A obviously can be taken to be all elements
of A of the form n;w, where w is a monomial in the §;’s. For fixed 7,, the number
of elements n,w of degree m is clearly the coefficient of x™ in x%&%/(1 — x)*.
Summing over all i, we get

2 xdeg

3 = g @

3[\48

We are now ready to state the main result of this section (which is given
implicitly in [11]). '

- THEOREM 4.2. Let I be a homogeneous ideal of R = K|[v,, . . ., v,], and suppose
A = R/I is Cohen-Macaulay of Krull dimension d. Let H(m) be the Hilbert
function of A, and define integers h; by

(1= )" S H(m)x™ = hy+ hx+ - - - 5)
m=0Q

Then (hy, hy, . ..) is an O-sequence. Moreover, h, = 0 for i sufficiently large.
Finally, if I contains no elements of degree 1, then h =n-—d.

Proof: Choose the §’s and s as in Proposition 4.1. Define B =
A/, ..., 0) It follows from Proposmon 4.1 that the images of the ;s in B
are a K- bas1s for B. Thus by (4) and (5) the Hilbert function for B is just A .
Hence by Corollary 3.3 we have that (hg, A, . . . ) is an O-sequence. Also, h, = 0
for i large, since the u; are finite in number. Finally, the space B, of forms of
degree 1 in B will be a quotient space of 4, by the K-space spanned by
8, ...,8, Since dim A4, = n if I contains no elements of degree 1, and since
8y, . .., 8, are necessarily linearly independent (even algebraically independent),
we have h) = dim B, =dim4, —d=n—-d. =&

COROLLARY 4.3. Let A be as in Section 2 and suppose that A, is Cohen-

Macaulay. Then the h-vector (hy, hy, ..., h;)) of A is an O-sequence with h,
=n—d B

CoroLLARY 4.4. If A, is Cohen-Macaulay, then the UBC holds for A.

Proof: By Corollary 4.3, (hy, hy, . . ., h;) is an O-sequence with h; = n — d.
Hence there is an order ideal M of monomials in n — 4 variables y,, ..., y,_4

such that h; = |{wEM : degw = i}|. Thus A, can be no more than the toral



The Upper Bound Conjecture and Cohen-Macaulay Rings 141

number of monomials of degree i in n — d variables, this number being

(" —d+i—1 ) The proof follows from our definition of the UBC. B
1l
We remark that Corollary 4.3 is the best possible, in the sense that given any
O-sequence (hg, by, - - ., hy), there eXists a (d — 1)-dimensional simplicial com-
plex A with h-vector (hg, hy, . . ., h;) such that 4, is Cohen-Macaulay. One may
even choose A to be semi-shellable in the sense of [10]; it can be shown that if A .
is semi-shellable, then 4, is Cohen-Macaulay over any field K.

5. The upper bound conjecture

The following question now arises: For what A is 4, Cohen-Macaulay? This
question was recently answered by G. Reisner [17] (Wwho was unaware of the
relevance of his work to the UBC). In order to state Reisner’s theorem, recall
that if F €A, then the link of F, denoted lk F, is defined by

Ik F={GeA:GNF =0 and GUFEA}.

Thus lk F is a subcomplex of A. In particular, lk & = A.
THEOREM 5.1 (G. Reisner). The following two conditions are equivalent:

(1) 4, is Cohen-Macaulay,

(ii) for each F €A (including F =H8), the reduced homology of lk F with
coefficients in K vanishes in all dimensions except possibly the dimension of lk F.
|

Using Theorem 5.1, a routine application of the universal coefficient theorem
shows that if 4, is Cohen-Macaulay over some field K, then 4, is Cohen-
Macaulay over the rationals Q. Hence we lose nothing in the following corollary
when we assume K = Q.

COROLLARY 5.2. If A satisfies condition (i) of Theorem 5.1 with K = Q, then
(hg, hy, . . ., hy) is an O-sequence and A satisfies the UBC. W .

If |A| is a manifold (with boundary allowed), then for any F ## it is known
that lk F is either a homology sphere or homology cell (the latter never
occurring if |A| is without boundary). Hence we deduce:

COROLLARY 5.3. If |A| is a manifold or manifold with boundary whose reduced
homology with coefficients in Q vanishes outside of dimension d — 1 = dim |A|,
then (hy, hy, . . ., h,) is an O-sequence and the UBC holds for A. In particular, the

UBC holds for spheres and cells. B
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