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We consider, for odd primes p, the function N(p, m, e) which equals the 
number of subsets SC{1 ,...,p - 1) with the property that &sxm = 
OL (modp). We obtain a closed form expression for N(p, m, IX). We give 
simple explicit formulas for N(p, 2, CZ) (which in some casea involve class numbers 
and fundamental units), and show that for a fixed m, the diffenx~ce between 
N(p, m, a) and its average valuep- 1 2 P-l is of the order of exp(~~~~~) or less. Finally, 
we obtain the curious result that if p - 1 does not divide m, then N(p, m, 0) > 
N(p, m, LX) for all OL + 0 (mod p). 

1. INTRODUCTION 

Let p be an odd prime, and let FP denote the field of integers modulo p. 
Let m be a positive integer and let 01 E FP . We are interested in the following 
problem: How many subsets S of F, * = Fv - (0) have the property that 

c x” = a (in FP) ? 
ZES 

(We allow S to be void, and we set &, P = 0). Call this number 
N(p, m, a). Clearly N(p, m, CL) = N(p, m’, CL) if (p - 1, m) = (p - 1, m'). 
Hence we may assume without loss of generality that m 1 (p - 1). Moreover, 
it is also clear that 

WP, m, 4 = N(P, m, 4W, a~F,,,jil~F~*. 
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Hence for given p and m 1 (p - l), there are 1 + m inequivalent values of 
N(p, m, CY.), viz., one for CY = 0 and one for each coset of the mth power 
residues in F,*. 

Since x*-l z 1 (modp) for x + 0, 

N(p,p-l,or)=(‘;l), O<or<p--1. 

Similarly, if m = (p - 1)/2, then x* = 51 (mod p) for x + 0 (modp) 
with each value taken on exactly m times. Hence if 0 < 01 < m, then any 
subset enumerated by N(p, m, CL) corresponds uniquely to a choice of a non- 
negative integer k and of 01 + k of the m elements for which xm E 1 (modp), 
and of m - k of the m elements for which xm = - 1 (modp) (the m - k 
elements that do not belong to that subset). Hence we obtain 

These two results are somewhat atypical, due to the large size of m compared 
to p. For m reasonably small, one might expect the values of N(p, m, a) 
for various 01 to be approximately equal; i.e., to differ from p-l2p-’ by a small 
error term. The main goal of this note is to explore the nature of this error 
term. 

The case m = 1 has been thoroughly studied, even when FD is replaced 
by the ring of integers modulo n for any n > 0. The evaluation of N(n, 1, CY) 
is implicit in [3] and some references given there, and more explicit in [4]. 
Since for many values of m the values N(p, m, CX) regarded as a function of 
01 behave exactly like N(p, 1, CL), we give a direct evaluation of this last 
quantity. If S is any nonvoid subset of FP* and 01 E F, , then there is clearly 
a unique /3 E FD such that CzeS (x + t!?) = (Y. Hence any given 01 E Fv appears 
equally often as a sum of the elements of the 2” - 2 proper subsets of FP , 
viz., (2P - p)/p times. The 22, - 2 proper subsets of F, come in pairs (S, T) 
where 0 4 S and T = S u (O}, except that the subsets {0} and F,* remain 
unpaired. In each pair (S, T) the sets S and T have the same element sum, 
while (0) and F,* also have the same element sum 0 (this is where it is 
necessary to assume p is odd). Hence each 01 E Fs appears (28-l - 1)/p times 
as a sum of the elements of the 2’-l - 1 nonvoid subsets of F,*. It follows 
that 

Ip-l(*‘-l p-1(2”-1 - N(A 134 1) if 01 # 0, = 
+ p _ 1) if (Y = 0, (1) 

since the contribution of the null set is by definition zero. 
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This note proves several new results about the numbers N(p, m, a). First 
(Lemma 2.1) an explicit formula, suitable for numerical computation, is 
found for N(p, m, a) in terms of roots of unity. This formula is then used 
to show that if 2 or -2 is an mth power residue modulo p, then N(p, m, a) 
has a very simple form (Theorem 3.1), and in fact equals N(p, 1, 01), which is 
given by (1). In particular, this determines N(p, 2, cx) unless p = 5 (mod 8). 
Next we express N(p, m, a) in terms of values of Dirichlet L-functions 
L(s, x) at s = 1 (Lemmas 1.1 and 4.1). This result shows easily (Theorem 4.2) 
that there exists a constant c > 0 such that 

I N(P, m, a) - p-l 2p-l I < exp(cmpliz) logp), 

for all 01, which justifies our claim that N(p, m, a) is almost equal to p-l2”-l 
for small m. The formula involving L(1, x), together with Dir&let’s class 
number formula, also allows us to determine N(p, 2, a) explicitly in the one 
remaining case p = 5 (mod 8) (Theorem 5.1). The answer there turns out 
to depend on the class number and fundamental unit of Q(pl/“). Finally, 
in the last section we show that N(p, m, 0) > N(p, m, a) for all Q! E Fp*, 
provided m < p - 1. 

Some of the results of this note can be straightforwardly extended to the 
case when p is not assumed prime. In fact, there are at least two possible 
extensions; to the case where we consider all the 2*-l subsets of {l,...,p - l} 
and to the case where we consider the 2d(p) subsets of (k: 1 < k < p - 1, 
(k,p) = 11. It turns out, however, that some of the generalizations break 
down for composite p. We will point out some of the differences in the text. 
We will not consider it for the sake of simplicity, but the most natural 
generalization would probably be to finite fields. 

2. BASIC RESULTS 

We now derive an expression for N(p, m, a) which will be a basic tool in 
what follows. Let 5 = e2ai/9, a primitivepth root of unity. 

8.1 LEMMA. We have 

Proof. Let 

(2) 

(3) 
9-l 

f(P, m,j) = n (1 + Pkm), 
k=l 
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and if S C FD*, let o(S) = CzEs xm. Then 

and the proof follows. 
The above result remains true even if p is composite, provided we consider 

all subsets of {l,..., p - I}. If p is composite and we consider only subsets 
of the integers relatively prime to p, then the product in (2) and (3) should 
be taken over only those k for which (k, p) = 1. 

3. THE EASY CASE 

There is a special class of p and m, including the case m = 1, for which 
N(p, m, LX) behaves exactly as if m = 1. 

3.1 THEOREM. Suppose 2 or -2 is an mth power residue modulo p, and 
assume m I (p - l), m < p - 1. Then 

N(p P7(2p-1 + P -  I>9 
a=0 

p ‘(2P-1 - I), a:#0 

Proof. Let f (p, m, j) be defined by (3). Suppose first that 2 is an mth 
power residue modulo p. Then k” and 2k” range over the same elements of 
of F,* as k ranges over F,*. Letting all products below range from k = 1 
tok=p- l,weobtain 

f ( p ,  m ,  j) = lXcl -  ‘“j”“) = 1 

r-j (1 - pm) ’ 
1 <j<p-1. 

Clearly also f(p, m, 0) = 2’-l. Hence by Lemma 2.1, 

N(p, m, CX) = f (2p-l + F1 <-.j) 
i=l 

I 

; (2P-1 + p - l), a=0 

= ;p-1 - I), 01 # 0. 
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Now suppose -2 is an mth power residue modulo p. We now write 

f(p, m j) = I-I 5”jkY5-“jk” - 1) 
9 

n (1 - [i”“) 

= ~zj(l~+zm+...+(P-l)m) "n&-y;+g 

However, it is well known that 1” + 2” + *** + (p - 1)” z 0 (modp) 
whenever m < p - 1, as can be seen by expressing all the summands in 
terms of any primitive root. (Alternatively, we could use the fact that 
1” + 2” + *.* + a? has the form (x + I)f(x)/(m + l)!, where f(x) is a 
polynomial with integral coefficients.) This completes the proof. 

The above analysis breaks down if p is composite, since 1” + *** + 
(P - 0” + 0 ( mo p in general for p not a prime, even when there are d > 
primitive roots modulo p. (However, Theorem 3.1 does remain valid if m + 1 
is smaller than the least prime factor of p. This follows from the observation 
made above about the polynomial expression for 1” + *+a + (p - l)“.) 

4. ANOTHER EXPRESSION FOR N( p, m, a) 

To obtain further results, we will use the Dirichlet characters x modulo p, 
the associated L-functions L(s, x)* and the Gaussian sums ~(x)[l, 21. 

4.1 LEMMA. Suppose that m 1 p - 1, j f 0 (mod p), and f(p, m,j) 
is defined by (3). Let x 1 ,..., x,, be the m characters module p of order m, with 
the convention that x1 is the identity character. Then 

f(p, mJ> = exp 
1 

f2 (1 - MU Z4.8 4x2 L(L %I . 
t 

(5) 

Proof. Taking the logarithm of (3), we obtain 

log f(p, m, j) = ‘2 2 k!JZ gjnk”’ 
k-1n=1 

We next express the inner sum above in terms of the characters x1 ,..., X~ . 
Since x1 ,..., xm are the characters of the multiplicative group F,* modulo 
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the multiplicative group of mth power residues, we have for a E F,* the ortho- 
gonality relation 

a = be, somekEF, 

Hence for a + 0 (modp), 

9-l m 
,z t 

b-a;“’ 

5” = $; 5” ,C, %(a) xc(b) 
c E 

Borne ksP,* 

Combining this with (5) we obtain 

logf(p, m,j) = 2 F (P - 1) 
?S=l 
Nn 

+ 2 (-1)“-1 m 
?I=1 

-y-- c ZT(39 T(Xr). 
t==l 

mn 

In the second sum on the right we have x&n) = xl(j) xl@) = 1 for 
(j, p) = 1, (n, p) = 1, and &) = - 1, so the trivial character and the first 
sum over those IZ such that p 1 n together contribute 

(p _ 1) 2 y-1 2 (-lq =p 2 y-1 f ‘-cy 

T&=1 n-1 734 n=1 
Pin 94% TJln 

= * 2 (-lP-l 

s=1 SP 
--pJZ~O. 

Therefore, since X,.(S) = 0 if (s, p) # 1, we have 

which completes the proof. 
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Our next result follws easily from the above lemma. 

4.2 THEOREM. There is a constant c > 0 such that for any p, m, and a, 

1 N(p, m, a) - ,’ 2p-1 1 < exp{cnz p112 logp}. 

Proof. It is well known [l, 21 that / T(X)] = p1j2 for any nonidentity 
character modp, and that [2, p. 1 lo] 1 L(1, x)[ < c’ logp for some constant 
c’ > 0. Hence for j f 0 (mod p), Lemma 4.1 yields 

I~(P, mj>l < expW(m - 1) pllz bpl, 

which together with Lemma 2.1 proves the theorem. 

5. THE CASE m = 2 

If 2 or -2 is a quadratic residue modulo p, then N(p, 2, a) is given by 
Theorem 3.1. However, the only odd primes p which have neither 2 nor 
-2 as a quadratic residue are those with p = 5 (mod 8). In this case we can 
evaluate N(p, 2, a) by using Lemma 4.1 and Dirichlet’s class number formula. 

5.1 THEOREM. Let p E 5 (mod 8), and let h be the class number of Q(P’/~), 
and E > 1 the fundamental unit of Q(p112). Then 

a=0 

I 
; p-1 + L!+(,4h + .-491, 

WP, 2,4= 
1 p-1 + E4h 

,p ( 
-1 ;Pl’2)+t-4h(-l ;“““)1, 

, ; [2%1-l _ c4h ( ’ i_2p1” ) _ E-4h ( ’ -2p1’z )], if (;) = -1. 

Proof. Since m = 2, we have only one term in the sum on the right side 
of (5), namely the one corresponding to the Legendre symbol x2(j) = (j/p). 
Also, T(& = p1j2 and by Dirichlet’s class number formula [2, Chap. 61 

Hence 

2h log E 
L(L Xl) = -p- - 

f(p, m, j) = expWj/pP log 4 = 
1 
:y4k if (j/p> = 1, 

3 if (j/p) = -1. 
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Now apply Lemma 2.1. If LX = 0, we get 

N(P, 2,O) = j (2p-’ + Cf(P, 24 

Exactly half the elements of F,* are quadratic residues and half nonresidues, 
so the theorem follows for 01 = 0. 

If (Y is a quadratic residue, say 01 = +I, we obtain 

NP, 294 = $ p-1 + c s-Y(P, 294 

=- ; ( 2P-l f E4h ,*;, P + c4h c 5’). 
(j/P)=-1 

It is an immediate consequence of the Gauss sum evaluation C (j/p) [j = p1/2, 
together with cj”=;’ I;j = - 1, that 

(j;=l 5j = -l y , (I& i-j = -l yp . 

From this the theorem follows for (a/p) = 1. 
The case (a/p) = -1 is done in exact analogy to the previous case, so 

the proof is complete. 
The Siegel formula on the class number implies that log(h log l ) N 4 logp 

asp -+ co, p = 5 (mod 8). Hence ~~~ is roughly of the order e@, so that for 
instance N(p, 2,0) exceeds the “expected” value 2P--i/p by about e”“’ when 
p = 5 (mod 8). In particular, this shows that the bound of Theorem 4.2 
is not far from best possible. It is also interesting to note that if p E 5 
(mod 8), (a/p) = 1, (/3/p) = - 1, then 

N(p, 2, a) - N(p, 2, ,8) = p& (c4h - EC”“). 

The fact that the left-hand side is positive is essentially equivalent to the 
relatively deep result that the Gauss sum z (j/p) cj is positive. 

It is interesting to compare the proof of Theorem 3.1 with Lemma 4.1. 
The crucial step in the proof of Theorem 3.1 was the proof thatf(p, m,j) = 1 
forj + 0 (mod p), if either 2 or -2 is an mth power residue modulo p. If 
2 is an mth power residue, this also follows easily from Lemma 4.1, since then 
x,(2) = 1 for all the characters x1 ,..., x,,, . If -2 is an mth power residue, 
however, this is not so simple. For example, if p = 3 (mod 8) and m = 2, 
thef(p, 2,j) = 1 is equivalent to proving that 

2ip11a L(l, xz) = 2vi . 1 
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for some integer I (since T(X) = ip1i2). In fact Dirichlet’s class number 
formulas show that I is the class number of the field Q((-p)l12). 

6. THE MAXIMUM VALUE 

Given p and m, we wish to show that N(p, m, LX) is maximized at OL = 0. 
This is an immediate consequence of the next lemma. 

6.1 LEMMA. Suppose m I (p - 1) and m # p - 1. Then f (p, m, j) is 
a positive real number. 

ProoJ: Case 1. m is odd. In this case the p - 1 factors of JJ (1 + 5jkm) 
can be divided into (p - I)/2 pairs of the form (1 + r;ikm) x (1 + [-jk>> 0. 

Case 2. m is even. Let r = (p - 1)/2. Then 

f (p, 4.8 = fi (1 + Cikm12, 
1 

so it suffices to show that A = ni (1 + 5jk”) is real. Its complex conjugate 
is given by 

where t = -j(l” + 2” + *a* + r”). Since m is even we have 2t = -j(l, + 
2” + -*a + (p - lP) (modp), so just as in the proof of Theorem 3.1 we 
conclude t = 0 (mod p) if m # p - 1. Hence A = A, and the lemma follows. 

6.2 THEOREM. Suppose m 1 (p - I), m # p - 1, and CII E F,,*. Then 
NP, m, 0) > NP, w 4. 

ProoJ By Lemmas 2.1 and 6.1, 

<j ‘$‘f (p, m,i) = NP, m, 0). 
3-O 

Equality holds if and only if 1 c-uj 1 = c-O1j for all j, which is impossible 
if 01 E F=*. This completes the proof. 
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Theorem 6.2 is false for composite p (whether we sum over all integers 
or only those relatively prime to p), as is shown by the example p = 21, 
m = 2. The reason that the proof breaks down is again the fact that 
1” + *** + (p - 1)” + 0 (mod p) in general if p is not prime. 
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