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Difterentiably Finite Power Series

R. P. STANLEY*

A formal power series ¥, f{n)x" is said to be differentiably finite if it satisfies a linear differential
equation with polynomial coefficients. Such power series arise in a wide variety of problems in
enumerative combinatorics. The basic properties of such series of significance to combinatorics are
surveyed. Some reciprocity theorems are proved which link two such series together. A number of
examples, applications and open problems are discussed.

1. INTRODUCTION

Recently there has been interest [2], [3], [16] in the problem of computing quickly the
coefficients of a power series F(x) =Y .o f(n)x", where say F(x}is defined by a functional
equation or as a function of other power series. If the coefficients f(n} have a combinatorial
meaning, then a fast algorithm for computing f(»n) would also be of combinatorial interest.
Here we consider a class of power series, which we call differentiably finite (or D-finite, for
short), whose coeflicients can be quickly computed in a simple way. We consider various
operations on power series which preserve the property of being D-finite, and give
examples of operations which don’t preserve this property. We mention some classes of
power series for which it seems quite difficult to decide whether they are D-finite.
Everything we say can be extended routinely from power series to Laurent series having
finitely many terms with negative exponents, though for simplicity we will restrict
ourselves to power series. Moreover, we will consider only complex coefficients, though
virtually all of what we do is valid over any field of characteristic zero (and much is valid
over any field}.

The class of D-finite power series has been subject to extensive investigation, parti-
cularly within the theory of differential equations. However, a systematic exposition of
their properties from a combinatorial point of view seems not to have been given before.
Many of our results can therefore be found scattered throughout the literature, so this
paper should be regarded as about 75% expository. To simplify and unify the concepts and
proofs we have used the terminology and elementary theory of linear algebra, though all
explicit dependence on linear aigebra could be avoided without great difficulty.

Let us now turn to the basic definition of this paper. First note that the field C{(x)) of all
formal Laurent series over € of the form ¥ .., f(n)x" for some ny € Z contains the field
C(x) of rational functions of x, and C{(x)) has the structure of a vector space over C(x).

DerinITION 1.1. A formal power scries y € C[[x]] is said to be differentiably finite {or
D-finite) if y together with all its derivatives y'™’ =d"y/dx", n =1, span a finite-dimen-
sional subspace of C{(x}), regarded as a vector space over the field C(x).

THEOREM 1.2. The following three conditions on a formal power series v € C[[x]] are
equivalent,
(i) y is D-finite.
(ii) There exist finitely many polynomials qo(x), . . ., qi(x), not all 0, and a polynomial
gix), such that

(k)

Ge(x}y™ 4 g ()Y +galx)y = glx). (1)
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(iiiy There exist finitely many polynomials po(x), . .., p=(x), rot all 0, such that
Pn(x)y™ 4+ 4 p i)y + polx)y = 0. (2)

ProoF

{(i)=> (ii). Suppose y is D-finite. Let the dimension of the vector space over C(x ) spanned
by v, ¥, y”", ... be k. Then with g{x) =0, (1) is just the relation of linear dependence (with
denominators cleared) which exists among the & + 1 series v, y', ..., y'*’.

{ii}= (iii). Suppose (1) holds with deg g(x)=d. Differentiating (1) &+ 1 times (with
respect to x) vields (2).

(iii)= (i) Suppose (2) holds with p..(x)=0. Dividing by p.(x) shows that y""'¢
v,y .y, where (- - ) denotes span over C{x). Differentiating (2) with respect to x
yields v Vel vy, . ., y"™ =y, ..., vy™ ). Continued differentiation yields

(m+i)

y ey, yy...,vy"™ "yforall i =0, so y is D-finite.

We now consider the question of characterizing the coefficients of a D-finite power
series.

DermviTioN 1.3,  Let N denote the set of non-negative integers. A function f:N->C is
said to be polynomially recursive (or P-recursive) if there exist finitely many pelynomials
Poln), ..., Ps(n), with P;(n) not identically zero, such that for all n e,

Piimfin+d)+Pialn)fn+d =1+ -+ Py(n)f(n)=0. {3)

Equation (3) defines f(n+d) in terms of f(n), fln+1),..., f{n +d —1), provided
P;(rn)#0. Hence if ny is large enough so that Py(n) # 0 for all n = ny, then (3) can be used
to compute rapidly (and with relatively little storage space) the sequence of values f{(n + d)
for n = ng.

We next show that the property of being P-recursive depends only on the behaviour of
f(n) for n large. Equivalently, altering finitely many values of f(n) does not affect whether
or not f(n) is P-recursive. Although this result is very easy to prove directly, it is convenient
for what follows to formulate it using the concept of germs. Define two functions f, g:N->C
to be equivalent if f(n) = g(n)for all n sufficiently large. This clearly defines an equivalence
relation; equivalence classes are called germs (more properly, “germs at c© of functions
f:N->C”). The germ containing f is called the germ of f and will be denoted {f].
Clearly addition and (pointwise) multiplication of functions is compatible with the above
equivalence relation, so we can speak of the sum and product of germs.

THEOREM 1.4. Iff, g:N—=C have the same germ, then f is P-recursive if and only if g is
P-recursive. Thus it makes sense to speak of a P-recursive germ.
Proor. Suppose f(n)=g{r)for all # > no. If f satisfies (3) for all n = 0, then g satisfies
Q(n)[Py(n)gln+d)+- - -+ Po(n)g(n)]=0
forall n =0, where Q{n)=n{n—1) - - - (n — ny). Symmetrically, if g is P-recursive, then so

is f.

We now come to the connection between P-recursive functions and D-finite power
series, This result is alluded to in [13, p. 299].

TueoreM 1.5 The formal power seriesy =Y., ., f(n)x" € C[x 1) is D-finite if and only if
f(n) is P-recursive.
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Proor. Suppose y is D-finite and that (2} holds. Since

yP= Y m+i-Nn+i-j-1 - (n—j+Dx",
n=0
when we equate coefficients of x” on both sides of (2} we will obtain a recurrence of the
form (3) for f{an).

Conversely, suppose f(n) is P-recursive and satisfies (3). The polynomial P;(n) can be
written (uniquely) as a linear combination of the polynomials (n+i);=
(n+in+i—-1)...(n+i—j+1),j=0. Hence the series Y P(n)f(n+i)x" is a linear
combination of those of the form ¥ ., (n +1);f(rn +1)x". It is easy to see that for some
polynomial R;(x),

Y (n+i)f(n+ix" =Rix)+x"""y",
n=0
Hence if we multiply (3) by x” and sum on n, then after multiplying by a sufficiently high
power of x we obtain a (non-zero) equation of the form (1), so y is D-finite.

We conclude this section with an analogue of Definition 1.1 for P-recursive functions.
We cannot regard the space of all functions f:N - C as a vector space over the field C(n) of
rational functions R :N- C because the rational function R = P/, where P and Q are
polynomials, is not defined when Q(n)=0. However, the space of germs of functions
f:N— C has an obvious structure of a vector space over the field C(n), viz., if R € C{n) then
define R [ f]to be the germ of any function g agreeing with Rin)f(r) for all n € Nfor which
R(n) is defined.

THEOREM 1.6. A function f:N- C is P-recursive if and only if the span of the germs
[FG)], [firn+ 1], [Fn+2)),... is a finite-dimensional subspace of the space of all germs
of functions f:N— C, regarded as a vector space over the field C{n).

PrOOF. Suppose (3) holds. Then

d—1 X
[finral= =3 2 pi i
i—o Pyln)
so[fln+d)e{(f(rn)],[f(n+1)),...,[f(n+d—1)]), where {- - -) denotes span over C(n).
Substituting successively n+1,n+2,... for » in (3) yields [f(n+e)le{{f(n)], [f{n+
Dl ..., [fla+d—1D]foralle=d.

Conversely, if the germs [f(n)], [f(# +1)], ... span a finite-dimensional subspace, then
some non-trivial linear relationship ¥ ,_g Ri(n)[f(n +i}]=0 holds, where each R{n)e
C(n). Clear the denominators of the R,(n)’s and use Theorem 1.4 to conclude that f(n) is
P-recursive,

2. ALGEBRAIC PROPERTIES OF D-FINITE POWER SERIES

We now consider what kinds of operations can be performed on D-finite power series
which again produce D-finite power series. This will yield a large class of examples of
D-finite series. Note that Theorem 1.2 already shows that many familiar power series are
D-finite, for example y =¢” (since y'—y =0), y =sin x and y =cos x (since y"+y =0,
y =log(1 +x) (since (1 +x)y’ = 1), etc. Theorem 1.5 also yields many quick examples, such
as y =3,,.q2!x", since f(n)=n! satisfies f(n+1)—(n + 1)f(n)=0. However, it is not
evident at this point which (if any) of the power series secx, ¢ % v1—xe*, e+
Ym0 ntlx™ e and v1+log(1 —x°) are D-finite.
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We first discuss an important class of D-finite power series. Recall that a power series
y € C[[x]] is said to be algebraic if 1, y, y*, v>, ... span a finite-dimensional vector space
over C(x). Equivalently, there exist finitely many polynomials Qg(x), ..., Qs{x), not all Q,
such that Qu(x)y%+-+ -+ Qux)y + Qplx) =0.

THEOREM 2.1. If y e C[[x]] is algebraic, then y is D-finite.

ReMARK. This simple result was well-known to early workers on algebraic functions,
though I don’t know where the first explicit statement appears. A proof may be foundin [7]
or [22, Theorem 5.1].

Theorems 1.5 and 2.1 show that the coeflicients of an algebraic function can be
quickly computed, though considerable conditioning may first be necessary to find the
recurrence (3). A different method for rapidly computing the coefficients of an algebraic
function appears in {16].

Note that the converse of Theorem 2.1 is certainly false. For instance, the power series
e and Zn'x" are D-finite but not algebraic.

ExampLE 2.2. Let R{x) be a rational power series such that R(0)# 0. Thus there
exists y € C[[x]] satisfying y* = R(x). Then y satisfies the differential equation kR (x)y’—
R'{x)y=0.

Recall that the set &f of all algebraic power series forms a subalgebra of C[[x]].
Moreover, if y € o and if the reciprocal y ' e C[[x]} Gi.e., if y(0)#0), then y " eof. If
u, v € & and v{0) = 0 (so that the formal composition (v (x)) is defined), then u (v (x)) & .
(For if 2Q;(x)u(x)' =0, then 2Q:{(v(x))u(v(x))' =0. Hence u(v(x)) is algebraic over
Clv(x)). Since v(x) is algebraic over C(x), u(v(x)) is therefore algebraic over C(x).) If
yedandy=a;x+ -+, a;#0(so the formal compositional inverse y(ﬂ} exists, with the
defining property v* "(y(x)) =y (v Y(x))=x), then y" e o (for if Q:(x)y' =0, then
%Q:(y" ")x' =0). We now consider to what extent these properties carry over to D-finite
power series.

THEOREM 2.3. The set @ of D-finite power series forms a subalgebra of C[[x]].

Proor, If yeC[[x]], let V, denote the vector space over C(x) spanned by
v, v, y", ... Nowletu,ve P anda,BeC.Set y=au+Bv. Theny, y',y", ... € V,+ V..
Thus (taking dimensions over C(x)),

dim V, =dim(V, + V,)=dim V, +dim V, <0,
Hence by definition, y is D-finite.
It remains to show uv € 2. Let V = C((x)), regarded as a vector space over C(x). There is
a unique linear transformation ¢: V, ®¢x) V., - V satisfying ¢ (1 ® ") =u"2". By

Leibnitz’ rule for differentiating a product, the image of ¢ contains V,,. Hence

dim V,, =dim(V, ® V,) = (dim V,){dim V,)< oo,

so uv € 9.

ExampLE 2.4. Let r be a positive integer, and set

pin=§,(2)

k=0
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Define F,(x)=X,.,x"/n!". Clearly F,(x) is D-finite, since the coefficients f(n)=1/n!
satisfy f(n +1)—(n +1)'f(n) = 0. Hence by Theorem 2.3, F,{x)” is D-finite. But

Fx)*= Y Biin)x

n=0 n'r

In general, if g(rn) is P- recurswe and satisfies E, o Pi(n)g(n+i)=0,then h(n)=g(n)n!"is
also P-recursive since Z[ o PinYn+d)(n+d-1)... (n+i+1Yh(n+i)=0. (Theorem
2.10 below gives a more general result.) Hence B (n) is P-recursive. Franel [10] in fact
conjectured that B,(n) satisfies a recurrence of the form

(20 B.(n) = fol2n ~DB,(n = 1)+ f(2n ~2)B,(n =2)
o+ f,(2n—1—¢)B.(n—q—1),

where ¢ = [(r—1)/2], and where fy, . . ., [, are polynomials with integer coefficients, each
of degree r— 1, satisfying fi(—m) = (—1)""'f;(m). Apparently this conjecture is still open,
although it probably should succumb to methods from the theory of hypergeometric
functions.

The next example shows that unlike the situation for algebraic power series, the
reciprocal of a D-finite power series need not be D-finite.

ExamrLE 2.5, Let y =secx. Clearly z = y~ ! is D-finite, since z"+z =0. Carlitz [4,
Theorem 4] has shown that y is not D-finite. Here we give a simpler proof. (For yet another
proof, see Section 4(a).) Suppose to the contrary y satisfies (2). Now y'= X\/ yz -1,
y"=y*+y?—y, and in general by induction it is easily seen that y**'" = Li-(y)'\/yz —1and
¥ = M;(y), where L; and M; are polynomials (with complex coefficients), both of degree
2i+1. Makmg these substitutions into (2) yields a non-zero polynomial equation in x, y,
and vy~ — 1 satisfied by y. Hence y is algebraic, contrary to a well-known and easﬂy proved
result. (For example, if y were algebraic, so would be y~ Y y “_1=¢" Bute” can be
seen to be non-algebraic in several ways, such as by Eisenstein’s Theorem [17, Part 8,
Chapter 3, Section 2], or by differentiating the alleged polynomial equation of smallest
degree satisfied by ¢, or by observing that the coefficients of e™ are rational but e = ¢ is
transcendental.)

We now consider the effect of functional composition on D-finite power series: first
some negative results.

ExamrPLE 2.6. Let y =(log(1 +x2))%. Note that:

(i) z=y*e @, since z'(1+x7)—2x =0

(i) Set F(x)=v1+x and G(x)=log(1+xH—-1, so Fesf and Ge%. Then y=
F(G(x)).

We now show yg 2. It follows from (i)—{(ii} above that square roots of D-finite power
series need not be D-finite, and that algebraic power series composed with D-finite power
series need not be D-finite. We have

1 x

y y 1+ 2

,_1 1-x* %

y y (1+x9° y2 1+x°
S S W
y (1+x) v (1+x%°
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and in general by induction,
no 1 1 1
y( )=‘R1i(x)+*3R2f(x)+' “+ = Rulx),
¥ y y

where each R;;{x) € C(x) and R;(x) # 0. If y satisfied (2), then making this substitution into
(2) would yield a non-zero polynomial equation satisfied by y. However y cannot be
algebraic, since, for example, it would easily follow that ¢* is algebraic.

A simple example (brought to my attention by Ira Gessel} of a D-finite power y whose
inverse y™" is not D-finite is given by y = tan™" x. One shows that tan x is not D-finite by
an argument similar to that of Example 2.5, or by the techniques of [4].

In view of Example 2.6, the next result comes as somewhat of a surprise.
THEOREM 2.7. If F(x)e @ and G(x)e o with G(0)=0, then F(G(x))e @.

ProOF. Let y=F(G(x)). We can write y"' as a linear combination of EF{(G(x)),
F'{G(x)), F'(G(x)), ..., with coefficients in C[G, G', G, . ..], the ring of polynomials in
G, G', G", ... with complex coefficients. Since G is algebraic, it follows from differentiat-
ing the polynomial equation satisfied by G that each G is a rational function of x and G.
Hence C[G,G',G",...]<Cix, G). Let V be the vector space of all C(x, &)-linear
combinations of F(G(x)), F'{G(x)),.... Since F, F', F",... span a finite-dimensional
vector space over C(x) (because F is D-finite), it follows that F(G(x)}, F'(G(x)), .. .spana
finite-dimensional vector space over C(G) and hence over C{x, G). Since V is finite over
C{x, G)and C(x, &) 1s finite over C(x), V is finite over C(x). Since each ym e V, it follows
that ye &.

ExamprLE 2.8. Let M(n) be the number of extreme points (vertices) of the convex
polytope of all # X n symmetric doubly-stochastic matrices. Katz [ 14] obtains a formula for
M(n) and uses it to compute M(n) for 1=n =<6. It can be shown (either from Katz’
formula or by a more direct argument) that

2

= g MO (T (505,

It follows immediately from Theorems 2.3 and 2.7 that y is D-finite. (This is also easy to
see directly, since y'/y € C(x).) We easily compute from (4) that

n+3
2
This yields a much faster method for computing M {(n) than Katz’ formula.
Similarly, if M*(n) denotes the number of extreme points of the convex polytope of all

n X n symmetric doubly substochastic matrices [15] (i.e., symmetric matrices of non-
negative real numbers, with every row sum at most one), then one can show that

5 M*(n)x”_(lu)%ex ( RN )
2o nl 1-x) PP\ TR

M{n+4)=M{n+3)+(n+2)°M(n +2)—( )M(n-f—l)f(n +3Mn +2)(n + DM ().

Again it is easy to compute the recurrence (3) satisfied by M™(n}).

ExampLE 2.9. If f:N— C, then the nrh difference of f at 0 is defined by

n

210 - & (1) 1r7r,

=0
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or equivalently,
n n i
s = ¥ (") a'700)
i=0

If Fix)=Y,.,f(r)x", thenlet F*(x}=Y% ., (A"f(0))x". It is easy to see that

()L (L) _ 1 g (L)
Fro=y Fiy) ad FoO=121)

It follows from Theorems 2.3 and 2.7 that F'(x) is D-finite if and only if F*(x) is D-finite.
(Since the composition of algebraic functions is algebraic, we also have that Fix) is
algebraic if and only if F*(x) is algebraic.)

The final operation on power series which we consider is the Hadamard product. If
y=Y f(n)x" and z =Y g(n)x", then by definition the Hadamard product y«z is the power
series

yxz =7 f(n)gln}x".

It is well-known that the Hadamard product yxz of algebraic power series need not be
algebraic. The standard example [13, p. 298], [17, Part 8, no. 148], [6, p- 251, [11, pp.
271-272] is given by

_L 2
y=z=(1-4x)=} ( n)x".
n=0 \ R
(It is known, however, that the Hadamard product of an algebraic power series and a
rational power series is algebraic [13, Theorem 8]). In contrast to the algebraic case, we
have the following result.

THEOREM 2.10. Let vy and z be D-finite power series. Then y+ z is D-finite. Equivalently,
if f(n) and g(n) are P-recursive, then f(n)g(n) is P-recursive.

ProoF. By Theorem 1.4, it suffices to show that the germ [ f(n)g(n)]is P-recursive. In
view of Theorem 1.5, we can simply mimic the proof that the product of D-finite power
series is D-finite (Theorem 2.3). Let V be the vector space (over the field C{»)} of all germs
of functions f:N—C. Given f:N—C, let V; be the subspace of V spanned by [f(n)],
[fir+1)], [f(n+2)],.... There is a unique linear transformation ¢: V;®¢(; V> V
satisfying [ f(n +{)] ® [g{n +j)]£> [f(n +i)g(n+])]. Clearly the image of ¢ contains V,,
50

dim V, =dim(V; © V,) = (dim V;)(dim V,) <0,

Hence fg is P-recursive.

A proof of Theorem 2.10 avoiding tensor products appears in [13, p. 299] and is
attributed to Hurwitz. This proof as stated is slightly inaccurate, though it is easy to fix by
working with » sufficiently large (or equivalently, with germs).

3. RECIPROCITY.

If f:N- C satisfies a linear homogeneous recurrence with constant coefficients, then the
recurrence can be “run backwards” to define f for all n € Z. Define the generating
functions F(x)=Y, ., f(r)x" and F(x)=Y ., f(—n)x". Then F(x) and F(x) are rational
functions, and Popoviciu’s theorem [ 18], [22, Theorem 4.4] states that F(x) = —F(1/x){ as
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rational functions). We want to extend this result to P-recursive functions. One difficulty is
that it may not be possible to run the recurrence (3) backwards because of the possibility
that Py(#n) = 0 for some » << 0. Thus for the time being we assume that f(n) is defined a priori
forallpeZ.

THEOREM 3.1, LetD =d/dx, and let @ =Y., pi{x)D’ be a linear differential operator
with polynomial coefficients pi(x). Thus for any z =Y, o g(n)x" e C[[x]] we have

Nz= % [Pa(mlglntd)+-- -+ Po(m)gn)e"" +4.(x) (5)
for certain polynomials Py, . . ., Py independent of z, a polynomial q, depending on z, and a

non-negative integer j independent of z. Let f:Z - C satisfy (3) for all neZ. Define
Y =Lao flnlx" eCllx}land § =%, o f(n)x" e C[[1/x]]. Then

(i)

I3

pi(x)y™ = qy(x) (6)

i=0

p(x)7" = —q,(x). (7)

g

PrOOF. Equgtion (6) is clear. Now (2 is clearly a linear operator on the space of all
Laurent series Y ,__ g(n)x". Since f satisfies (3) for all # € Z, we have 2{y +¥) =0, s0 (7)
follows.

In the special case m =0, Equations (6) and (7) take the form p(x)y =g(x) and
plx}y = —q(x}for certain polynomials p and g with deg ¢ <.deg p. If we substitute 1/x for x
in the second equation, then we obtain Popoviciu’s theorem.

Theorem 3.1 has the defect that given f(n), we must choose a particular differential
operator {2 in order to deduce the reciprocal formulas (6) and (7). Ideally, given the
D-finite power series y =3 __, f(n)x", we would like to take any differential equation (6)
and deduce (7). In general this is not possible. For instance, although y =3, ,n!x" is
D-finite, there is no function f:Z-»C satisfying f(r)=n! for n=0 and satisfying a
non-trivial recurrence (3) for all n € Z. Suppose then we simply assume we are given
f:Z~ C satisfying (3) for all ne Z. There are still difficulties. For example, consider the
equation

(n+1)f(n)y=0. (8)
One solution f: Z— C to (8) is given by
0, n#—1
f(n)—{l, n=-1.

Thusy =%, .o fin)x" satisfies y =0,but § =¥ ., f{—n)x " does not satisfy the reciprocal
equation y = 0. The reciprocity theorem fails because, in a sense, the “correct” equation
satisfied by f(n) for n =0is f(n) =0, not (r +1)f(n) = 0. The factor of n + 1 introduced a
“spurious” degree of freedom into the behavior of f(r) for n < 0. In order for a reciprocity
theorem to hold for any differential equation satisfied by y =%, ., f(r)x", we need an
hypothesis which guarantees that the values of f(n) for n =0 and for » <0 are correctly
coupled. First we need the following lemma.

Lemma 3.2, Suppose f:N— C is P-recursive. Let d be the least non-rnegative integer such
that f satisfies a recurrence of the form (3). Then there are unique polynomials
Po(n), ..., Py(n) such that (i) Pun) is monic, (i) f sadsfies (3), and (i) if
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Qu(n), ..., Quln) are polynomials such that
Qa(n)f(n+d)+- -+ Qo(n)f(n)=0, &)
then for some polynomial R{n), we have Q;(n)=R{(n)Pi(n) for 0=i=d.

Proor. Given d, choose Py(n), ..., Py(n) so that P;(n) is monic, f satisfies (3), and
deg P;{n) is minimal, Now suppose [ satisfies (9). Let K {n) be the greatest monic common
divisor of P4(n) and Q4(n), and choose polynomials A(r), B(n) so that A(n)P,(n)+
B(n)Qy(n)=K(n). Then taking A(r) times (3) plus B(n) times {9), we see from the
definition of P;(n) that Py(rn)=K(n), so P;(n)R{n)= Qu{(n) for some polynomial R{n).
Now taking R (#} times (3) minus {9}, we get from the minimality of d that P;(n)R{n}=
Q:(n)for 0=<i=d.

LemMma 3.3, Letf:N- C be p-recursive, and let (3) be the unique equation of least degree
satisfying the conditions of Lemma 3.2. Suppose that P,(n) has no integral zeros. Fix any
extension (also called f) of fto Z satisfying (3) foralln € Z. (If no such extension exists, then
this lemma is inapplicable.) Suppose that f also satisfies

Q.(m)f(n+e)+- - +Q(n)f(n)=0 (10)

for all n sufficiently large (where the Q; are polynomials in n). Then (10) continues to hold for
allne 7,

Proor. Suppose (10) holds for all n = k = 0. First note ¢ = d, since

k—1
[T e -n]@omftn+ers- -+ Qotmyian =0 an
holds for all n € Z. We now use induction on e. If ¢ =d, then by Lemma 3.2 (11) is a
multiple of (3}. Since Py(r)# 0 for n € Z, it follows that (10) holds for all n e Z.

Now assume ¢ > d and that the lemma holds for all &' << e. Substitute n +e¢ —d for n in
(3}, multiply by Q. (»n), and subtract Equation (10) multiplied by P,(n + e —d). We get an
equation of degree less than e satisfied by f(#) for all n sufficiently large. By the induction
hypothesis, this equation holds for all # € Z. Since equation (3) hoids for all ne 7, it
follows that equation (10) times P;(n +e —d) holdsforallr € Z. Since P;(n + e —d) # Ofor
n e Z, the result follows.

THEOREM 3.4. Let f:N—>C be P-recursive, and let (3) be the unique equation of least
degree satisfying the conditions of Lemma 3.2. Suppose that P,{n) has no integral zeros. Fix

any extension of f to Z satisfying (3) for all n€ Z. (If no such extension exists, then this
theorem is inapplicable.) Define

y= éof(n)x", y= Z;,Of(n)x".
Suppose that
£ ity =at)

is any linear differential equation with polynomial coefficients pi(x) and q(x) satisfied by y.
Then

gﬂ pi(x)7" = —q(x).
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ProoOF. Let 2=} _,pi(x)D". Then for any z =Y., g(n)x" € C{{x]] there are poly-
nomials Pg(n), ..., P;(n) independent of z, a polynomial ¢.(x) depending on z, and a
non-negative integer j independent of z, for which (5) holds. It follows that Py (n)f(n +d)+
-+ =+ Po(n)f(n) =0 for all n sufficiently large, By Lemma 3.3, this equation holds for all
n € Z. The proof now follows from Theorem 3.1.

We now have a satisfactory generalization of Popoviciu’s theorem to D-finite power
series. It would also be desirable to have a generalization to algebraic power series. Of
course every algebraic series is D-finite so Theorems 3.1 and 3.4 apply, but ideally we want
a reciprocity theorem which only refers to the polynomial equation satisfied by the
algebraic series y, not to the differential equation which y satisfies. We will give one such
result here, based on an idea of James Shearer. However, a more general result might be
true—see the remarks after the proof of the following proposition.

ProOPOSITION 3.5, Lety =Y., f(n)x" e Cl[x]] be D-finite and analytic at x =0, and
suppose that f satisfies (3) for all n eN. Assume that y satisfies the following three additional
conditions.

(i} The polynomial Pyln) of (3) has no zeros at negative integers. Thus we can uniquely
define f(n) for all n € Z so that (3} holds.

(i) Let =Y, p:(x)D" be the linear differential operator satisfving (5). Then
deg p;(x) <1,

(iii) The analytic function y has a branch y* at o satisfying

y*= ;0 frn)x”
for some complex numbers f*(n).

Then fH(n)=—f(—n). Thus —y=—-Y,.of(n)x" satisfies any functional equation
(defined in terms of analyiic operations) satisfied by y. In particular, if v is algebraic, then y
and —§ satisfy the same polynomial equation.

Proor. By condition (ii), we have

N Y gmx"= Y [Puln)gn+m)+-+Po(n)g(n)lx"

n<( AR<—m

-1
+ ¥ [Poaalm)g(-=1)+P_, 5(n)g(=2}+ - -+ Po(n)g(n))x".

n=—m

In particular,

-1
Ay Zof(n)x" = _Z [Ppoi(m)f(—=1)+ - -+ Po(n)f(m)x".
Call the right-hand side of the above equation —g(x). If z =Y, ., g(n)x" satisfles 2z =
—qg{x), then for all n satisfying —m <n <—1 we have

P (n)f(=1)+-- -+ Polr)f(n)=P_.1(n)g{-1)+ - -+ Py(n)g(n).

This is a triangular system of m equations in the m unknowns g{—1),..., g{—m). The
coefficients on the main diagonal are Po(—1),..., Po(—m), which by condition (i) are
non-zero. Hence g(n)=f(n) for —m = n = —1. Thus by condition (i), g(n}=f(n) for all
n<0. In other words, the series ¥ =Y ,.,f(n)x" is the unique series of the form
z=Y,.0gln)x" satisfying £2z = —q(x). On the other hand, by Theorem 3.1 we have
2y = q(x). By analytic continuation, any branch y, (analytic in some open subset of C) of
the analytic function defined by y also satisfies {2y, =q{(x). In particular, 2y* = g(x).
Hence y* = —7, and the proof follows.
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Proposition 3.5 and its proof raise two questions.

(a) Conditions (i)-(iii) {especially (ii)) are extremely restrictive. For instance, they are
satisfied by an algebraic function of y of degree two if, and only if, y>+(ax +b)y +c = 0for
complex numbers a, b, ¢ with ac # 0. Can the conditions (i)-(iil) be relaxed? Toward this
end we raise the following question.

Question

(a) Let y =Y, ., f(n)x" € C[[x]] be algebraic, and suppose that y satisfies (3) for all
n €N. Assume that for all n € Z we have Po(r)#0 and P,(n)#0. Thus in particular
we can uniquely define f(n) for all n e Z so that (3) holds. Is it true that the series
y* ==Y _, f(n)x" isabranch of y at c0? (The answer is negative if we only assume y to be
analytic; e.g., let f(n) satisfy (n +5f(n+1)—f(n)=0,£(0) = 1. This suggests a negative
answer also for algebraic functions, though it can be shown that if y is algebraic then y*is a
branch at oo of some element of the splitting field of y.)

(b) The proof of Proposition 3.5 used complex variable theory in an essential way. Can a
purely algebraic (or formal) proof be given of this result when y is algebraic?

EXAMPLE 3.6. Suppose 2y~ + (3 —x)y +1=0. (See [22, p. 129] for the significance of
this equation.) There are two power series y = Y, f(n)x" satisfying this equation. Both
of these series also satisfy

(r+2)fn+2)-32n+Df(n+1)+(n—1)f(n)=0 {12)
(x* —6x+1)y' —(x —3)y =—2.

Moreover, the branches y* at o0 satisfy 2xy*(1/x)>+(3x —1)y*(1/x)+x =0, so there is a
(unique) branch y* =x "' +3x *+11x"*+. .. of the form ¥, ., g(n)x". Thus conditions
{i)-(iii) of Proposition 3.5 are satisfied. It follows that both series y =¥, ., f(n}x" must
satisfy ¥ o f(—n)x" = —y* Now the two series y begin —1+x+...and —3—3x+....
Hence the recurrence (12), with either of the initial conditions f(0)=~1, f(1)=1 or
f(0) = f(1) = — 73 yield the same values of f{n) for n <0.

4. FURTHER PROBLEMS AND EXAMPLES

We collect here a list of miscellaneous problems and examples concerning D-finite
series,

(a} Develop general methods for determining when a power series is D-finite. A useful
necessary condition for D-finiteness follows from the theory of differential equations.
Namely, suppose that y is D-finite, satisfies (1) with g, (x) # 0, and is analytic at x = 0. Then
y can be extended to an analytic function in any simply-connected region of the complex
plane not containing a zero of g, {(x). Thus for instance sec x is not D-finite (since it has
infinitely many poles), and the partition generating function [, ., (1— £ is not
D-finite, since it has the unit circle as a natural boundary.

(b) Suppose that F(x(,...,x}=% flay, ..., @)X’ - - - xi* is a power series over C in
k variables which represents a rational function of x4, . . ., x;. Define the diagonal power
series diag F =Y., f(n, n,..., n)x". When k =2, diag F is known to be algebraic[11, p.
2731, [9, Section 5], [22, Theorem 5.3]. When & =3 it is known that diag F need not be
algebraic (e.g., when F(xy, x2, x3)=(1—x;—x,—x3)""). Using the methods of [24] and
some results from differential algebra, D). Zeilberger has shown (private communication)
that diag F is D-finite for any £.

(c) LetSi(n)bethe number of standard Young tableaux (e.g. [8, pp. 125-126]) with the
nentries 1,2, ..., n and with <k rows, Let v, =Y ., Se(n)x". Tt is well-known that y,
and y; are algebraic, and it follows from [21, pp. 30-31] that y; is algebraic. (One can also
give a more direct proof of this result.) It apparently is not known whether y; is algebraic or
D-finite for k = 4.
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{d) Let H,(r) (respectively, I.(r)) denote the number of n X n matrices (respectively,
symmetric matrices) of non-negative intepers such that every row and column sums to r.
(Various modifications are possible; for instance, we could restrict the entries to be Qor 1.)
Are the powerseriesy, =Y, o H.(r)x" and z, =¥ ..o L, (r)x" D-finite? It follows from [1]
and [12] that the answer is affirmative for r =2 (see also [21, Example 6.11]) but the case
r=13 remains open. By a laborious computation Read {19, p. 351] [20, Section 3] has
verified that if J, denotes the number of # X n symmetric matrices of 0’s and 1°s with trace
0 and every row sum equal to 3, then Y., .., f.x" is D-finite. Can Read’s techniques be
extended to y, and z,?

(e) The recent proof by Apéry that ¢(3) is irrational (see [23] for a nice survey of this
result) involves the recurrence

oup+(n— Wpa=34n> 510" +27n = 5un_y, n=2.

This recurrence is satisfied, for example, by
B0 - s
T\ ok Pln— k)1
This leads to the question as to whether a function g(n) =Y, _, fi(k)f2(n —k)fs(n + k) is
P-recursive provided each f: is P-recursive. Of course more general questions of this
nature can be raised.
(f) The recurrence [3, equation (21)]

(n+1D)(n+2)(n+3)B3n-2)B(n)=2(n+1)9n*+3n>—4n+4)B(n—-1)
+(Brn—1Hn-2)(151n* =51 —14)B(n —2)
+8(3n + 1)(n —2)%(n —=3)B(n —3), n=4,

is satisfied by the function
n+1\ nE2N 8 mt N nt a1
Bx) ( 1 ) ( 2 ) kgl(k—l)( k )(k-&-l)‘ (13)
Here B{(n) is the number of “reduced Baxter permutations” of {1,2, ..., n}. One can
easily see from (13) that B(n) is P-recursive by an argument analogous to that of Example
2.4, though to get the actual recurrence requires a lot of computation. Can (13) be
generalized to counting other classes of permutations?

(g) Given the differential equation (2), together with suitable initial conditions, satisfied
by a D-finite power series y, give an algorithm suitable for computer implementation for
deciding whether y is algebraic. One method for showing that a power series y such as
¥ .20 (%x" is not algebraic is analytic, i.e., showing that the coefficients (> have a rate of
growth incompatible with the behaviour of algebraic functions (such as described in [13]).
Alternatively, if the coeflicients of v = F(x) are rational (or even algebraic) numbers, then
sometimes one can show that as a function of a complex variable, F(x) is transcendental for
some algebraic value of x [11, pp. 271-272]. Both these methods treat y as a function of a
complex variable, not as a formal power series. Is there a more algebraic technique, and of
greater generality, for deciding whether a power series is algebraic? (One purely formal
criterion for algebraicity is Eisenstein’s theorem [17, Part 8, Chapter 3, Section 2], but it is
inapplicable to power series with integer coefficients.) In particular, while ', (e is
easily proved to be non-algebraic by standard analytic techniques for allintegers £ = 1, we
are unable to decide whether ¥, _, (> " 'x" is algebraic for k = 1.



Differentiably finite power series 187

ACKNOWLEDGEMENT

I am grateful to J. Shearer for many helpful discussions regarding the subject matter of

this paper, especially Sections 3 and 4.

10.
11.
12.
13.

14.
15.

16.
17.
18.
19,
20.
21.
22.

23.

24

I

1$

fu

REFERENCES

. H. Anand, V. C, Dumir, and H. Gupta, A combinatorial distribution problem, Duke Math. J. 33 (1966},
757-769.

. R. P. Brent and H, T. Kung, Fast algorithms for manipulating formal power series, J. Assoc. Comp. Mach.,
{to appear}.

. R.P. Brent and J. F. Traub, On the complexity of composition and generalized composition of power series,
Dept. of Computer Science Report, Carnegie-Mellon Univ., 1978,

. L. Carlitz, Recurrences for Bernoulli and Euler numbers, J. reine angew. Math. 214/215 (1964), 184-191.

. F.R. K. Chung, R. L. Graham, V. E. Hoggatt, Jr., and M. Kleiman, The number of Baxter permutations, .J.
Combinatorial Theory (A) 24 {1978), 382-394.

. P. M. Cohn, Algebra and language theory, Bull. London Math. Soc. 7 (1975), 1-29.

. L. Comtet, Calcul pratique des coefficients de Taylor d’une fonction algébrique, Enseignement Math. 10
{1964), 267-270.

. L. Comtet, Advanced Combinaterics, Reidel, Dordrecht and Boston, 1974.

. M. Fliess, Sur divers produits de séries formelles, Bull. Soc. math. France 102 (1974), 181-191,

I. Franel, L'Intermédiaire des mathématiciens 1 (1894), 45-47; 2 (1895), 33-35,

H. Furstenberg, Algebraic function fields over finite fields, J. Algebra 7 (1967), 271-277,

H. Gupta, Enumeration of symmetric matrices, Duke Math. J. 35 {1968), 653-659.

R. Jungen, Sur les séries de Taylor n’ayant que des singularités algébrico-logarithmiques sur leur cercle de

convergence, Comment. Math. Helv. 3 (1931), 266-306.

M. Katz, On the extreme points of a certain convex polytope, J. Combinatorial Theory, 8 (1970), 417423,

M. Katz, On the extreme points of the set of substochastic and symmetric matrices, J. Marh. Anal. Appl. 37

(1972), 576-579.

H. T. Kung and J. F. Traub, All algebraic functions can be computed fast, J. Assoc. Comp. Mach. 25{1978),

245-260.

G. Pélya and G. Szegd, Problems and Theorems in Analysis, vol. 11, Springer, Berlin, Heidelberg, New York,

1976.

T. Popoviciu, Studie si cercetari stiintifice, Acad. R.P.R. Filiala Cluj 4 (1953), 8.

R. C. Read, The enumeration of locally restricted graphs (11}, J. London Math. Soc. 35 (1960), 344-351.

R. C. Read, Some unusual enumeration problems, Ann. New York Acad. Sci. 175 (1970), 314-326.

A. Regev, Asymptotic values for degrees associated with strips of Young diagrams, preprint.

R. P. Stanley, Generating functions, MAA Studies in Combinatorics (G. C. Rota, ed.), Mathematical

Association of America, 1978, pp. 100-141.

A. van der Poorten, A proof that Euler missed... Apéry's proof of the irrationality of ((3), Marh.

Intelligencer 1 (1979), 195-203.

. D. Zeilberger, The algebra of linear partial difference operators and its applications, preprint.

Received 23 October 1979

R. P. STANLEY
Department of Mathemarics, Massachusets Institute of Technology,
Cambridge, Massachuserts 02139, US.A.

Note added in proof

(i) An independent proof that diag F is D-finite (Section 4(b)) has been given by
Gessel, Two theorems on rational power series, Utilitas Math., to appear.

(ii) D. Zeilberger has shown (private communication) that the series y; of Section 4(c)
D-finite for all k£ =1.
(iii) D. Zeilberger has also shown, using his theory of “special functions”, that many
nctions of the type considered in Section 4(e) are D-finite.
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(iv) In connection with Section 4(g), A. van der Poorten has kindly brought to my
attention the references: F. Baldessarri and B. Dwork, On second order linear differential
equations with algebraic solutions, Amer. J. Matk. 101 (1979), 4276, and Y. Amice, Les
Nombres P-adiques, Presses Universitaires de France, 1975, chap. 5.



