FACTORIZATION OF PERMUTATIONS INTO n-CYCLES*

Richard P. STANLEY

Department of Mathematics. Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Received 29 March 1980 Revised 24 November 1980

Using the character theory of the symmetric group \mathfrak{S}_n , an explicit formula is derived for the number $g_k(\pi)$ of ways of writing a permutation $\pi \in \mathfrak{S}_n$ as a product of k n-cycles. From this the asymptotic expansion for $g_k(\pi)$ is derived, provided that when k=2, π has $O(\log n)$ fixed points. In particular, there follows a conjecture of Walkup that if $\pi_n \in \mathfrak{S}_n$ is an even permutation with no fixed point, then $\lim_{n\to\infty} g_2(\pi_n)/(n-2)! = 2$.

1. Introduction

Let π be an element of the symmetric group \mathfrak{S}_n of all permutations of an n-element set. Let $g_k(\pi)$ be the number of k-tuples $(\sigma_1, \ldots, \sigma_k)$ of cycles σ_i of length n such that $\pi = \sigma_1 \cdots \sigma_k$. Thus $g_k(\pi) = 0$ if either

- (a) π is an odd permutation and n is an odd integer, or
- (b) π is odd, n is even, and k is even, or
- (c) π is even, n is even, and k is odd.

Husemoller [6, Proposition 4] attributes to Gleason the result that $g_2(\pi) > 0$ for any even π . The function $g_2(\pi)$ was subsequently considered in [1, 2, 9]. In particular, Walkup [9, p. 316] conjectured that $\lim_{n\to\infty} g_2(\pi_n)/(n-2)! = 2$ where π_1, π_2, \ldots is any sequence of even permutations without fixed points, with $\pi_n \in \mathfrak{S}_n$. We will use the character theory of \mathfrak{S}_n to derive an explicit expression for $g_k(\pi)$ from which Walkup's conjecture can be deduced. More generally, we can write down the entire asymptotic expansion of the function $g_k(\pi)$ for fixed k (provided the number of fixed points of π remains small when k=2). The technique of character theory was also used in [1, Section 3], and some special cases of our results overlap with this paper. In [2, Corollary 4.8] an explicit expression for $g_2(\pi)$ is derived, which is simpler than ours, and which can also be used to prove Walkup's conjecture. I am grateful to the referee for calling my attention to [2].

^{*} Partially supported by the National Science Foundation and Bell Telephone Laboratories, Murray Hill, NJ.

2. Character theory

We first review the results from character theory that we will need. Let G be any finite group and $\mathbb{C}G$ its group algebra over \mathbb{C} . If C_i , $1 \le i \le t$, is a conjugacy class of G, then let $K_i = \sum_{g \in C_i} g$ be the corresponding element of $\mathbb{C}G$. If χ^1, \ldots, χ^t are the irreducible (ordinary) characters of G with deg $\chi^i = f^i$, then the elements

$$F_{i} = \frac{f^{i}}{|G|} \sum_{i=1}^{t} \chi_{i}^{i} K_{i}, \quad 1 \leq j \leq t,$$

$$\tag{1}$$

are a set of orthogonal idempotents in the center of $\mathbb{C}G$, where χ_i^i denotes χ^i evaluated at any element of C_i . Inverting (1) yields

$$K_{i} = |C_{i}| \sum_{i=1}^{t} \frac{\overline{X_{i}^{i}}}{f^{i}} F_{i}, \qquad (2)$$

where $|C_i|$ is the number of elements of the class C_i . See, e.g., [3, Section 236]. Since the F_i 's are orthogonal idempotents, we have for any integer $k \ge 1$,

$$K_{i}^{k} = |C_{i}|^{k} \sum_{i=1}^{t} \left[\frac{\overline{\chi_{i}^{i}}}{f^{i}}\right]^{k} F_{i} = |C_{i}|^{k} \sum_{i=1}^{t} \left[\frac{\overline{\chi_{i}^{i}}}{f^{i}}\right]^{k} \frac{f^{i}}{|G|} \sum_{l=1}^{t} \chi_{l}^{i} K_{l}$$

$$= \frac{|C_{i}|^{k}}{|G|} \sum_{l=1}^{t} K_{l} \sum_{i=1}^{t} \left[\frac{\overline{\chi_{i}^{i}}}{f^{i}}\right]^{k} f^{i} \chi_{i}^{i}.$$

$$(3)$$

Now let $G = \mathfrak{S}_n$. A partition of n may be regarded as a sequence $\rho = \langle a_1, \ldots, a_n \rangle$ of non-negative integers such that $\sum ia_i = n$. We then write $\rho \vdash n$. We also write $\rho = (1^{a_1}, 2^{a_2}, \ldots, n^{a_n})$ where terms i^{a_i} with $a_i = 0$ are omitted and where exponents $a_i = 1$ are omitted. For instance, $\langle 0, 1, 0, 0, 2 \rangle = \langle 2, 5^2 \rangle$ is a partition of 12. For later convenience we also write $(1^{n-1}, 1)$ for the partition $(1^n) = \langle n, 0, \ldots, 0 \rangle$, and we set $\lambda_i = (1^i, n-i)$ for $0 \le i \le n-1$. If $\rho = \langle a_1, \ldots, a_n \rangle \vdash n$, then the set of elements of \mathfrak{S}_n with a_i cycles of length i forms a conjugacy class C_ρ of \mathfrak{S}_n . The class $C_{(n)}$ of n-cycles is abbreviated C_n , so $|C_n| = (n-1)!$. If $\rho : \mathfrak{S}_n \to \mathbb{C}$ is constant on conjugacy classes and if $\pi \in C_\rho$, then we write interchangeably $\rho(\pi)$ or $\rho(\rho)$ or $\rho(C_\rho)$. Note in particular that $\rho(\pi)$ has this property, so $\rho(\pi)$ denotes $\rho(\pi)$ for any $\rho(\pi)$. Recall that for each partition $\rho(\pi)$ of $\rho(\pi)$ there is a natural way of associating an irreducible character $\rho(\pi)$ of $\rho(\pi)$. Chapter 5. In particular, the partition $\rho(\pi)$ corresponds to the trivial character $\rho(\pi)$ for all $\rho(\pi)$.

We next state two crucial lemmas involving the characters χ^{Λ} . A proof of Lemma 2.1 is an immediate consequence of the 'graphical method' for determining the characters of \mathfrak{S}_n [5, Chapter 7.4; 7, Chapter 5.3; 8, Chapter 4]. See [5, p. 205; 8, Lemma 4.11] is particular. A proof of Lemma 2.2 essentially appears in [7, p. 139].

Lemma 2.1. Let $0 \le i \le n-1$ and $\lambda \vdash n$. Then

$$\chi_n^{\lambda} = \begin{cases} (-1)^i, & i_j^{\alpha} \lambda = \lambda_i = (1^i, n - i), \\ \\ 0, & otherwise, \end{cases}$$

where χ_n^{λ} is the value of the character χ^{λ} at any element of C_n .

Lemma 2.2. Let $0 \le i \le n-1$ and $\rho = \langle a_1, a_2, \ldots, a_n \rangle \vdash n$. Then

$$\chi_{\rho}^{\lambda_{i}} = \sum {a_{1}-1 \choose r_{1}} {a_{2} \choose r_{2}} {a_{3} \choose r_{3}} \cdots {a_{i} \choose r_{i}} (-1)^{r_{1}+r_{d}+r_{h}+\cdots},$$

where the sum is over all partitions (r_1, r_2, \ldots, r_i) of i. In particular, $\deg \chi^{\lambda_i} = f^{\lambda} = \binom{n-1}{i}$.

3. A formula for $g_k(\pi)$

It is now easy to give a formula for $g_k(\pi)$.

Theorem 3.1. Let $\rho = \langle a_1, \ldots, a_n \rangle \vdash n$. Then

$$g_k(\rho) = \frac{(n-1)!^{k-1}}{n} \sum_{i=0}^{n-1} \frac{(-1)^{ik}}{\binom{n-1}{i}^{k-1}} \sum_{\langle r_1, \dots, r_i \rangle} \binom{a_1-1}{r_1} \binom{a_2}{r_2} \binom{a_3}{r_3} \cdots \binom{a_i}{r_i} (-1)^{r_2+r_4+r_6+\cdots}$$

where (r_1, \ldots, r_i) ranges over all solutions in non-negative integers to $\sum jr_i = i$.

Proof. As above, let C_n denote the class of *n*-cycles in \mathfrak{S}_n and $K_n = \sum_{\pi \in C_n} \pi \in \mathbb{C}_n$. By definition of $\mathbb{C}\mathfrak{S}_n$, we have

$$K_n^k = \sum_{k \vdash n} g_k(\rho) K_{\rho}.$$

Hence by (3) and the fact that the characters of \mathfrak{S}_n are real, there follows

$$g_k(\rho) = \frac{(n-1)!^k}{n!} \sum_{\mu \vdash n} \left(\frac{\chi_n^{\mu}}{f^{\mu}}\right)^k f^{\mu} \chi_{\rho}^{\mu}.$$

Then by Lemma 2.1,

$$g_k(\rho) = \frac{(n-1)!^{k-1}}{n} \sum_{i=0}^n \left(\frac{\chi_n^{\lambda_i}}{f^{\lambda_i}} \right)^k f^{\lambda_i} \chi_{\rho}^{\lambda_i} = \frac{(n-1)!^{k-1}}{n} \sum_{i=0}^n \frac{(-1)^{ik} \chi_{\rho}^{\lambda_i}}{(f^{\lambda_i})^{k-1}}.$$

Substituting the values $\chi_{p}^{\lambda_{i}}$ and $f^{\lambda_{i}}$ from Lemma 2.2 completes the proof.

Some special cases of Theorem 3.1 are particularly simple. Putting $\rho = (1^n)$ yields

$$g_k(1^n) = \frac{(n-1)!^{k-1}}{n} \sum_{i=0}^{n-1} (-1)^{ik} \binom{n-1}{i}^{-(k-2)},$$
(4)

the number of ways of writing the identity permutation in \mathfrak{S}_n as a product of k n-cycles. When k = 3, the sum (4) can be evaluated [4, (2.1); 1. Section 3(ii)]. Namely,

$$g_3(1^n) = \begin{cases} 0, & n \text{ even,} \\ \\ 2(n-1)!^2/(n+1), & n \text{ odd.} \end{cases}$$

A more combinatorial proof of (5) is essentially given in [1, Corollary 2.2]. It is also clear that $(n-1)!g_k(C_n) = g_{k+1}(1^n)$, since $\pi_1 \cdots \pi_k \in C_n$ if and only if there is a (unique) $\pi_{k+1} \in C_n$ satisfying $\pi_1 \cdots \pi_k \pi_{k+1} = \varepsilon$. Hence

$$g_k(C_n) = \frac{(n-1)!^{k-1}}{n} \sum_{i=0}^{n-1} (-1)^{i(k+1)} {\binom{n-1}{i}}^{-(k-1)},$$

$$g_2(C_n) = 2(n-1)!/(n+1), \quad n \text{ odd.}$$
(6)

This same formula is obtained by setting $\rho = (n)$ in Theorem 3.1. More generally, we have

$$g_{k}(1^{n-i},j) = \frac{(n-1)!^{k-1}}{n} \sum_{i=0}^{n-1} \frac{\left[\binom{n-j-1}{i} - (-1)^{i} \binom{n-j-1}{i-j}\right] (-1)^{ik}}{\binom{n-1}{i}^{k-1}},$$

for $2 \le j \le n$, where we set $\binom{n-j-1}{i-j} = 0$ if i < j.

As a further special case, if n = mj + 1, then from Theorem 3.1 we obtain

$$g_k(1, j^m) = \frac{(n-1)!^{k-1}}{n} \sum_{i=0}^m \frac{(-1)^{ijk} \binom{m}{i}}{\binom{n-1}{ij}^{k-1}}.$$

In particular, when m=1 we get $g_k(1, n-1) = 2(n-1)!^{k-1}/n$. Walkup [9, Theorem 1] gives a combinatorial proof that $ng_2(1^{a_1}, 2^{a_2}, \ldots, n^{a_n}) = g_2(1^{a_1+1}, 2^{a_2}, \ldots, n^{a_n})$. Thus from $g_2(1, n-1) = 2(n-1)!/n$ we get another proof of (6). In effect, we have another proof of the identity [4, (2.1)]. Some other explicit values of $g_2(\rho)$ appear in [1, Corollary 2.2; 2, Example 4.9] and can be deduced from Theorem 3.1 using the appropriate binomial coefficient identity.

4. Asymptotics

We now derive an asymptotic expansion for $g_k(\rho)$, where $\rho = \langle a_1, a_2, \dots, a_n \rangle$. When k = 2, it will be necessary to assume that a_1 is not too large. First we dispose of the easy case $k \ge 3$.

Theorem 4.1. Fix $k \ge 3$. Let $\rho = \langle a_1, \ldots, a_n \rangle \vdash n$. If $(n-1)k + a_2 + a_4 + \cdots$ is odd, then $g_k(\rho) = 0$. If $(n-1)k + a_2 + a_4 + \cdots$ is even, then for any fixed $j \ge 0$ we have

$$g_k(\rho) = \frac{2(n-1)!^{k-1}}{n} \left[\sum_{i=0}^{j} \frac{(-1)^{ik} \chi_{\rho_i}^{\lambda_i}}{\binom{n-1}{i}^{k-1}} + O(n^{-(j+1)(k-2)}) \right],$$

uniformly in a_1, a_2, \ldots, a_n and $n = \sum ia_i$.

Proof. The assertion for $(n-1)k + a_2 + a_4 + \cdots$ odd is equivalent to (a)-(c) of Section 1. Hence assume $(n-1)k + a_2 + a_4 + \cdots$ is even. Since the partitions λ_i and λ_{n-i-1} are conjugate, we have e.g. by [7, p. 71] that $\chi_{\rho}^{\lambda_i} = (-1)^{a_2 + a_4 + \cdots} \chi_{\rho}^{\lambda_{n-i-1}}$. Thus if we set $T_i = (-1)^{ik} \chi_{\rho}^{\lambda_i} / \binom{n-1}{i}^{k-1}$, then $T_i = T_{n-1-i}$. Hence

$$g_k(\rho) = \begin{cases} \frac{2(n-1)!^{k-1}}{n} \sum_{i=0}^{(n-2)/2} T_i, & \text{if } n \text{ is even,} \\ \\ \frac{2(n-1)!^{k-1}}{n} \left(\sum_{i=0}^{(n-3)/2} T_i + \frac{1}{2} T_{(n-1)/2} \right), & \text{if } n \text{ is odd.} \end{cases}$$

Thus

$$\left| \frac{ng_k(\rho)}{2(n-1)!^{k-1}} - \sum_{i=0}^j T_i \right| \le \sum_{i=j+1}^{\lfloor n/2 \rfloor} |T_i| \le \sum_{i=j+1}^{\lfloor n/2 \rfloor} \frac{|\chi_{\rho}^{\lambda_i}|}{\binom{n-1}{i}^{k-1}}$$
 (7)

by Lemma 4.2. For any character χ and element g of any finite group G, we have $|\chi(g)| \le \deg \chi$, since $\chi(g)$ is the trace of a matrix with $\deg \chi$ rows and columns, whose eigenvalues are roots of unity. Hence by Lemma 2.2, we have $|\chi_{\rho}^{\lambda}| \le {n-1 \choose i}$. Thus the error term (7) is bounded by

$$\sum_{i=j+1}^{\lfloor n/2\rfloor} \frac{1}{\binom{n-1}{i}^{k-2}} \le \frac{1}{\binom{n-1}{j+1}^{k-2}} + \frac{n}{\binom{n-1}{j+2}^{k-2}} = O(n^{-(j+1)(k-2)}).$$

This completes the proof.

Using Lemma 2.2, we can give the asymptotic expansion of $g_k(\rho)$ as a function of a_1, a_2, \ldots, a_n . We expect the $(n-1)!^k$ products $\pi_1 \pi_2 \cdots \pi_k$ to be approximately equidistributed through the $\frac{1}{2}n!$ allowable elements of \mathfrak{S}_n . Indeed.

R.P. Stanley

Theorem 4.1, say for j = 2, asserts that when $k \ge 3$,

$$\frac{\frac{1}{2}n!g_k(\rho)}{(n-1)!^k} = 1 + \frac{(-1)^k(a_1-1)}{(n-1)^{k-1}} + \frac{\binom{a_1-1}{2}-a_2}{\binom{n-1}{2}^{k-1}} + O(n^{-3(k-2)}).$$

When k=2, we need a more delicate estimate than $|\chi_{\rho}^{\lambda}| \leq {n-1 \choose i}$. If $F(x) = \sum_{i \geq 0} f_i x^i$ and $G(x) = \sum_{i \geq 0} g_i x^i$ are power series with real coefficients, write $F(x) \geq G(x)$ if $f_i \geq g_i$ for all $i \geq 0$.

Lemma 4.2. If $F(x) \ge 0$, then

$$\frac{F(x)(1+x^{i})}{1-x} \ge \frac{F(x)(1+x^{i+1})}{1-x}$$
 (8)

for all $i \ge 0$.

Proof. We have

$$\frac{F(x)(1+x^{i})}{1-x} - \frac{F(x)(1+x^{i+1})}{1-x} = x^{i}F(x) \ge 0,$$

as desired.

Lemma 4.3. Let $\rho = \langle a_1, \ldots, a_n \rangle \vdash n$, and let $0 \le i \le \lfloor n/2 \rfloor$. Then

$$|\chi_{\rho}^{\lambda}| \leq 2^{a_1} i \binom{[n/2]}{[i/2]}.$$

Proof. According to Lemma 2.2, we have

$$\sum_{i=0}^{n-1} \chi_{\rho}^{\lambda_i} x^i = (1+x)^{a_1-1} (1-x^2)^{a_2} (1+x^3)^{a_3} \cdots (1-(-1)^n x^n)^{c_n}.$$

Hence

$$\sum_{i=0}^{n-1} |\chi_i^{\lambda_i}| x^i \leq \frac{(1+x)^{\alpha_1} (1+x^2)^{\alpha_2} \cdots (1+x^n)^{\alpha_n}}{1-x}.$$

By successive applications of Lemma 4.2, we obtain

$$\sum_{i=0}^{n-1} |\chi_{\rho}^{\lambda_i}| |x^i| \leq \frac{(1+x)^{\alpha_1}(1+x^2)^{\alpha_2+\cdots+\alpha_n}}{1-x} \leq \frac{2^{\alpha_1}(1+x^2)^{\lceil n/2\rceil}}{1-x}.$$

Since $\binom{[n/2]}{j-1} \le \binom{[n/2]}{j}$ when $j \le [n/2]$, the proof follows.

Theorem 4.3. Let $\rho = \langle a_1, a_2, \dots, a_n \rangle \vdash n$. If $a_2 + a_4 + \cdots$ is odd (i.e., if ρ is odd), then $g_2(\rho) = 0$. If $a_2 + a_4 + \cdots$ is even (i.e., if ρ is even), then for any fixed $j \ge 0$ we

have

$$q_2(\rho) = \frac{2(n-1)!}{n} \left[\sum_{i=0}^{j} \frac{\chi_{\rho_i}^{\lambda_i}}{\binom{n-1}{i}} + O(2^{\alpha_1} n^{-(j+1)/2}) \right]$$

uniformly in a_1, a_2, \ldots, a_n and $n = \sum ia_i$.

Proof. As in Theorem 4.1, we may assume $a_2 + a_4 + \cdots$ is even. Setting $T_i = \chi_0^{\lambda_i}/(n_i^{-1})$, then as in (7) we obtain

$$\left|\frac{ng_2(\rho)}{2(n-1)!} - \sum_{i=0}^i T_i\right| \leq \sum_{i=j+1}^{\lfloor n/2 \rfloor} \frac{\chi_{\rho}^{\lambda_i}}{\binom{n-1}{i}}.$$

Thus by Lemma 4.3.

$$\left| \frac{ng_2(\rho)}{2(n-1)!} - \sum_{i=0}^{j} T_i \right| \leq \sum_{i=j+1}^{\lfloor n/2 \rfloor} \frac{2^{a_i} i \binom{\lfloor n/2 \rfloor}{\lfloor i/2 \rfloor}}{\binom{n-1}{i}}. \tag{9}$$

Denote the left-hand side of (9) by E_i , and let $t_i = \binom{[n/2]}{[i/2]} / \binom{n-1}{i}$. Then $t_i = O(n^{-(i+1)/2})$ for i = j+1, j+2, j+3, j+4 and [n/2]. Hence

$$E_{i} \leq 2^{a_{i}} n \sum_{i=i+5}^{\lfloor n/2 \rfloor - 1} t_{i} + O(2^{a_{i}} n^{-(j+1)/2}).$$
 (10)

We claim that $t_i \ge t_{i+2}$ provided $0 \le i < \lfloor n/2 \rfloor - 2$. We will prove only the case n = 2m, i = 2k - 1 here. The three remaining cases are handled similarly. When n = 2m and i = 2k - 1, we have by direct calculation

$$t_i - t_{i+2} = \frac{2m!(2k-1)!(2m-2k-2)!(2m^2 - (6k+2)m + 4k^2 - 1)}{(k-1)!(m-k+1)!(2m-1)!}.$$

The largest root of the equation $2x^2 - (6k + 2)x + 4k^2 - 1 = 0$ is given by

$$x = \frac{1}{2}(3k+1+\sqrt{k^2+6k+3}) < \frac{1}{2}(3k+1+k+3) = 2k+2.$$

Hence if m > 2k + 1, then $2m^2 - (6k + 2)m + 4k^2 - 1 > 0$. Since m > 2k + 1 is equivalent to $i < \frac{1}{2}n - 2$, the claim is proved.

It follows from (9) and the inequality $t_i \ge t_{i+2}$ that

$$E_{i} \leq 2^{a_{1}}n^{2}(t_{i+5} + t_{i+6}) + O(2^{a_{1}}n^{-(j+1)/2}) = O(2^{a_{1}}n^{-(j+1)/2}),$$

completing the proof.

Thus for instance taking j=2 in Theorem 4.3, we obtain that for even ρ ,

$$g_2(\rho) = \frac{2(n-1)!}{n} \left[1 + \frac{a_1 - 1}{n-1} + \frac{\binom{a_1 - 1}{2} - a_2}{\binom{n-1}{2}} + O(2^{a_1} n^{-3/2}) \right].$$

Since $a_1 = O(n)$, it follows that if $a_1 = 0$ (or in fact $a_1 = o(\log n)$), then $g_2(\rho)/(n-2)! \to 2$ as $n \to \infty$, which is Walkup's conjecture [9, p. 316]. In fact, it suffices to assume only $a_1 = O(\log n)$. For assume $a_1 \le B(\log n)$ for all n. Take $j > 2B(\log 2) - 1$ in Theorem 4.3 to obtain

$$g_2(\rho) = \frac{2(n-1)!}{n} \left[\sum_{i=0}^{j} \frac{\chi_{\rho_i}^{\lambda_i}}{\binom{n-1}{i}} + o(1) \right] = \frac{2(n-1)!}{n} [1 + o(1)],$$

By a more careful analysis, Kleitman has shown (private communication) that $g_2(\rho)$ has the asymptotic expansion

$$g_2(\rho) \sim \frac{2(n-1)!}{n} \sum_{i \ge 0} \frac{\chi_{\rho}^{\lambda_i}}{\binom{n-1}{i}}$$

provided only $a_1 = o(n)$. The key step is an improved version of Lemma 4.3, but we will not enter into the details here.

References

- [1] E.A. Bertram and V.K. Wei, Decomposing a permutation into two large cycles: An enumeration, SIAM J. Algebraic and Discrete Methods 1 (1980) 450-461.
- [2] G. Boccara, Nombre de représentations d'une permutation comme produit de deux cycles de longueurs données, Discrete Math. 29 (1980) 105-134.
- [3] W. Burnside, Theory of Groups of Finite Order, second ed. (Dover, New York, 1955).
- [4] H.W. Gould, Combinatorial Identities, revised ed. (published by the author Morgantown, WV, 1972).
- [5] M. Hamermesh, Group Theory and its Application to Physical Problems (Addison-Wesley, Reading, MA, 1962).
- [6] D.H. Husemoller, Ramified coverings of Riemann surfaces, Duke Math. J. 29 (1962) 167-174.
- [7] D.E. Littlewood, The Theory of Group Characters, second ed. (Oxford University Press, London, 1950).
- [8] G. de B. Robinson, Representation Theory of the Symmetric Group (University of Toronto Press, 1961).
- [9] D.W. Walkup, How many ways can a permutation be factored into two *n*-cycles?, Discrete Math. 28 (1979) 315-319.