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OF PERMUTATIONS INTO n-CYCLES* 
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Using the character theory of the symmetric group ES,,, an explicit formula is derived for the 
number Q(V) of ways of writing a permutation TT E S;,, as a product of k n-cycles. From this the 
asymptotic expansion for gk(n) is derived, provided that when i. = 2, T has O(log n) fixed 
points. In particular, there follows a conjecture of Walkup that if 71;, EG,, is an even 
permutation with no fixed point ., then lim,,, gJn,,)/(n -2)! = 2. 

1. Introduction 

Let 7r be an element of the symmetric group G, of all permutations of an 

n-element set. Let g&r) be the number of k-tuples (ml,. . . , u,J ot cycles ai of 
length rz such that v = crl l l ’ uk. Thus gk (v) = 0 if either 

(a) v is an odd permutation and II is an odd integer, or 
(b) 7r is odd, n is even, and k is even, or 
(c) ?r is even, n is even, and k is odd. 

Husemoller [6, Proposition 41 attributes to Gleason the result that g,(,n) > 0 for 
any even w. The function g&r‘ was subsequently considered in [l, 2,9]. In 
particular, Walkup [9, p. 3161 conjectured that lim,,, gz(vJ(n -2)! = 2 where 
m1,w2,... is any sequence of even permutations without fixed points, with 
V” c G,,. We will use the character theory of G,, to derive an explicit expression 
for gk (v) from which Walkup’s conjecture can be deduced. More ger lerally, we 
can write down the entire asymptotic expansion of the function gk (n) for fixed k 

(provided the number of fixed points of 7~ remains smsll when k = 2). The 
technique of character theory was also used in [l, Section 31, and some special 
cases of our results overlap with this paper. In [2, Corollary 4.81 an explicit 
expression for g2(r) is derived, which is simpler than ours, and which can also be 
used to prove Walkup’s conjecture. I am gratefILl to the referee for calling my 
attention to [Z]. 

* Partially suppoTted by the National Science Foundation and Bell Teiephone Laboratories, Murray 
Hill, NJ. 
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2. Character theory 
We first review the results from character theory that we will need. Let G be 

any finite group and @G its group algebra over @. If Ci, 1~ i s t, is a conjugacy 
class of G, then let Ki = Cn.c, g be the corresponding element of @G. If x1, . . , x’ 

are the irreducible (ordinary) characters of G with deg xi = f’, then the elements 

4 f’ jl X’K. =- 

PI 

i 1) lqq 
i-1 

(1) 

dre a set of orthogonal idempotents in the center of @<3, where xi denote< xi 
evaluated at any element of Ci. Inverting (1) yields 

where lCi\ is the number of elements of the class Ci. See, e.g., [3, Section 2361. 
Since the 6’s are orthogonal idempotents, we have for any integer k 3 1, 

(3) 

Now let G -=G,,. A partition of I? may be regarded as a sequence p = 

(a,, **3 a,,;! of non-negative integers such that C iai = n. We then write p + n. We 
also write p = (l”1, 2(22:, . . . , n”ll) where terms i”l with ai = 0 are omitted and where 
expOiEntS cli = 1 are omitted. For instance, (0, 1, 0, 0,2) = (2,5’) is a partition of 
12. For later convenience we also write (1”--I, 1) for the partition (1”) = 
(n, 0,. . . ,0), and we set Xi -(li,n-i) for OGGn-1. If ll=(c~i,.. . ,tt,,)bn, 

then the set of elements of G,, with a, cycles of length i forms a conjugacy class 
C,, of G,,. The class C(,,) of n-cycles is abbreviated C,,* SO IC,, I = (~2 - l)!. If 

4 :%, -+@ is constant on conjugacy classes and if 7r E C,, then we write inter- 
changeably 4(~) or 4(p) or 4(C,). Note in particular that gk (7r) has this 
property, SO gk (p) denotes &(T) for any m E Co. Recall that for each partition A of 
YZ there i:; a natural way of associating an irreducible character X* of G,, 
[5, Chapter 7; 7, Chapter 51. In particular, the partition (n) corresponds to the 
trivial chaxcter J$ = 1 for all p t-n. 

We next state two crucial lemmas involving the characters x*. A proof of 
Izmma 2.1 is an immediate consequence of the ‘graphical method’ for determin- 
ing the characters of G,, [&Chapter 7.4; 7,Chapter 5.3; &Chapter 41. See 
[5, p. ‘:!05; 8, emma 4.1 l] il particular. .P. lroof of Lemma 2.2 essentially 
appears in [7,p. -1391. 
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Lemma 2.1. Let 0~ i G n - 1 and A I-K Then 

d,-I)‘, ifA =Ai =(li, n-i), 
? 

An Z 

0, otherwise, 

where xi is the value of the character xA at any element of Cn. 

Lemma 2.2. Let OG<n--1 and p=(a,,a*,. . .,a,,)cn. Then 

where the sum is over all partitions .‘r,, rz, . . . , ri) of i. In particular, deg xA 
(” i ‘). 

3. A fOl’mUhl for &.(n) 

It is now easy to give a formula for &k(s). 

Theorem 3.1. Let Q = (a,, . . . , a,, ) I- n. Then 

f” = 

gkb)= 
(tt - l)!k--’ n-1 

n 
c 
i =O 

where (r,,..., ri) ranges over all solutions in non-negatk integers to C jr, = i. 

Prook As above, let C,, denote the class of n-cycles in G,, and K,, = xnGc,, 7r E 
d=G,,. By definition of @G,,, we have 

Kt; = c &(P)&. 
vt--rl 

Hence by (3) and the fact that the characters of G,, are real, there follows 

(n - l)!” 
Rk(d= nr 

. 

Then by Lemma 2.1, 

gk b) = 

(n -l)!"-' 

n 

Substituting the values & a f”~ from Lemma 2.2 completes the proof. 
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Some special cases of Thetxem 3.1 are particularly simple. Putting p = (1”) 

the number of ways of writing the identity permutation 
k n-cycles. When k = 3, the sum (4) can be evaluated [4, 
Namety, 

i 

0, n even, 

g,(l”) = 

in G, as a product of 
(‘1!. 1); 1. Section 3(ii)]. 

2(n - 1)!‘2/(n + l), n odd. 

A more combinatorial proof of (5) is essentially given ii1 [ 1, Corollary 2.21. It is 

(4) 

alsc clear that (n - l)!g,k(C,) = gk+l(ln), since ?rl l l l ?rk E c,, if and only if there is 
a (unique) rk+r E C, satisfying fll l ’ ’ wknk+l = E. Hence 

g (c 

k\ n 

) Jn -l)!k-’ ‘l--l 
i2 

2) (-l)i(k+l)( n i ‘) -(k-‘), 

g2(C,) = 2(n - l)!l(n + l), n odd. (6) 

This s;Ime formula is obtained by setting Q = (n) in Theorem 3.1. More generally, 
we ha-de 

g,(l”--‘, i) = 
(n - I)!“_’ 

n 

n-l 

c 
i=O 

[ (,I -;- l)_(_lf ;i-; I)lr-l,ik 
n-1 k-1 

( ) i 

for Sj<n, where we set C,r;_$‘)=O if i<j. 
As a further, special case, if n = ntf + 1, then from Theorem 3.1 we obtain 

h partkular, when m == 1 we get gk (1, 12 - 1) = 2(n - 1)!k-‘/t2. Walkup 19, 
Theorem l] gives a combinatorial proof that ngz( 1”1,2”~, . . . , Nell) = g#l+‘, 
2”2, . . . , n”vl). Thus from g,(l, n - 1) = 2(n - 1)!/n we get another proof of (6). In 
effect, we have another proof of the identity [4, (2.1)]. Some other explicit values 
of g,,(p) appear in [ 1, Corollary 2.2; 2, Example 4.91 and can be cfeduced from 
Thecxem 3. i using the appropriate binomial coefficient identity. 
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4. Asymptotics 
We now derive an asymptotic expansion for gk (p), where p = {a,, az, . . , , a,). 

When k = Z!, it will be necessary to assume that aI is not too large. First we 
dispose of the easy case k > 3. 

Theorem 4.1. Fix ka3. Let p=(a,,...,u,)/-n. If (n-ll)k+=rz+u4+**+ 
odd, then g&)=0. lf (n-l)k+u2+u,-+ l is even, then for any fixed ja0 we 
have 

, 
2(n - l)!k-l 

Rm= n 

uniformly in aI, u2, . . . , a,, and n = C iu,. 

Proof. The assertion for (n - l)k + a2 + u4 + l l l odd is equivalent to (a)-(c) of 

Section 1. Hence assume (at - 1) k + u2 + u4 + l l l is even. Since the partitions hi 

and A,l_i__r are conjugate, we have e.g. by [7, p. 711 that x,“l= (-~)Q-L~~~+‘*.x~~~-~ 1. 
Thus if we set 7’i = (-l)ik~~~/(“fl)k-‘, then Ti = T”_1-i. Hence 

2(n _ l)!k-1 (n-2)/2 

c 

T 

iv if n is even, 
n i=O 

gk(d= 

2(n - l)!k-l (“-3V2 T + 1 

n c 
i=O ’ z 

T 

(n 1 b/2 

_ 

‘t if n is odd. 

Thus 

(7) 

by Lemma 4.2. For any character my and element g of any finite group G, we have 
Ix(g)1 sdeg x, since x(g) is the trace of a matrix with deg x rows and columns, 
whose eigenvalues are roots of unity. Hence by Lemma 2.2, we have )x#(“;‘). 
Thus the error term (7) is bounded by 

This completes the proof. 

; 
c / Using Lemma 2.2, we can give the asymptotic expansion of a(P) as a function 
: We expect the (n - l)!k products v1v2 l ’ l wk to be approxi- 

1 

of a 1, a2, . . . , un. 

; mately equidistributed through the in! allowable elements of E,,. Indeed. 
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Theorem 4.1, say for j = 2, asserts that when k 2 3, 

When k = 2, we need a more delicate estimate than le,“j s(“;‘). If F(x) = 

xi 20 fixi and G(x) = Ciao g$ are power series with real coefhcients, write F(x) > 
G(x) if fi 2 gi for all i 2 0. 

Lemma 4.2. If F(x) > 0, tlzen 

F(x)(l+x’)~F(x)(l+x’+‘) 

1-X l-X 

In!g,(p)=l+(-l)k(u,-l)+ 
(n - l)Ik (n - l)k-’ 

3(k--2) 
)’ 

03) 

Proof. We have 

F(x)( 1 +x9 F(x)( 1 +x’+‘) 

l-x - l-x 
= x%(x) 20, 

as desired. 

Lemma 4.3. Let P=(a ,,..., a,,) c- 11, and let 0 S i <[n/2]. Then 

roof. According to Lemma 2.2, we have 

n-l 

c 
&A = (1 +x)%-1(1 --x2)%(1 +x3)%. . . (1 -(-q’,“)~“* 

i -0 

‘Hence 

n - 1 

c !xFjxi sl 
(1 +x)“1(1 +X2)az l l l (1. +X”p 

-- 
1 -x 

. 

i =l) 

By succeGve applications of Lemma 4.2, we obtain 

11- 1 
C Ix:,1 xi ~ ;1+ X)al(: + ~2)a2+‘*‘+at’ ~ _2”‘( 11-k X:)ln121 , 

_- ’ - 
i =\) 

Since (‘,IL”i’) c (r”izl) when j <[n/2], the proof follows. 

3. Let p =(al, a2,...,a,,)+n. Ifa2+a4+* * l is odd (i.e.., ifp is odd), 
tlzen g2(p) = 0. Irf cd2 + u4 + 9 0 l is even, (i.e., if p is even), then for any fixed j 2 0 we 
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have 

:2(p) = 
2(t2 - l)! 

c 

” 
I2 

I d 
Xk' +o(2uln - (i+1)/2 i-0 n -1 

( ) 

)I i 
unifomiy in aI, a2, . . . , a,, and n = 1 iai. 

Proof. As in Theorem 4.1, we may assume + + a4 + l l * 1:; even, Setting T - 

x$/(“; ‘), the n as in (7) we obtain 

I w2b) 

2(12 - l)! 
_ i + “f’ A-. 

i =(j i -itI n 

( > i 

Thus by Lemma 4.3. 

a,. WI 

I W*(P) ( ) 
2(12 - l)! 

_ i + ‘“fs’ 2 
, =(I i-l+1 

;y1 . 
( ) i 

(9) 

Denote the left-hand side of (9) by Ei, and let ti = (~$~)I(“i’). Then li =:: 
ofI2 -(i+lU2 ) for i=j+l,j+2,j+&j+4 and [n/2]. Hence 

[n/21- 1 

i =j+S 

We claim that ti 3 ti +2 provided 0 s i < [n/2] - 2. We 
n = 2 n2, i =z 2k - 1 here. The three remaining cases are 
12 = 2111 and i = 2k - 1, we have by direct calculation 

(10) 

will prove only the cast 
handled similarly. When 

ti - ?i +2 = 
2112 !(2k - 1)!(2 tz -2k -2)!(2m2-(6k +2)112 +4k2- 1) 

(k - l)!(nt - k + 1)!(2m - l)! 
. 

The largest root of the equation 2x2 - (6k +2)x -+4k2 - 1 = 0 is given by 

Hence if n2 >2k + 1, then 2r,z”-(6k +2)rn +4k2- 1 >O. Since HI >2k + 1 is equi- 
valent to i < $ i2 - 2, the claim is proved. 

It follows from (9) and the inequality ti 2 ti t2 that 

completing the proof. 



262 R.P. Stadey 

Thus for instance taking j = 2 in Theorpm 4.3, we obtain that fcr even p, 

i 

a1 -1 

:?(n-l)! l+a,-1+ ( ) 
g2(d=- n - - 

2 -a2 

n-l n-l 

( ) 

+ 0(2”1 ns312) . 2 1 
Since ai = O(n):, it follows that if a 1 = 0 (or in fact al = o(log n)), then 

g2(p)/(n -it)! + 2 as n 300, which is Walkup’s conjecture [9, p. 
suffices to assume only a 1 = O(log n). For assume Q 1 =S B(log n) 
j 3 2B(log 2) - 1 in Theorem 4.3 to obtain 

3 161. In fact, it 
for all n. Take 

2(n-l)! ’ 
g2(d=--y c i i=O 

Ak+o(l) = ,t n_l 

( ) 
I 

2(n -I)! [1+0(l)], 

i 

By a more careful analysis, Kleitman has shown (private communication) 
g2(p) has the asymptotic ex.pansion 

that 

2(n - l)! 
g2w-y c * 

i*O 

( - ) 2 

proviclcd oniy 41~ = o(n). The key step is an improved version of Lemma 4.3, but 
we will not ente; into the details here. 
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