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FACTORIZATION OF PERMUTATIONS INTO n-CYCLES*
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Using the character theory of the symmetric group ©,, an explicit formula is derived for the
number g, () of ways of writing a permutation 7 € Z,, as a product of k n-cycles. From this the
asymptotic expansion for g (=) is derived, provided that when i. =2, 7 has O(log n) fixed
points. In particular, therc follows a conjecture of Walkup that if m,€®, is an even
permutation with no fixed point:, then lim, ., g,(m,)/(n ~2)! =2.

1. Introduction

Let w be an element of the symmetric group &, of all permutations of an
n-element set. Let g () be the number of k-tuples (o4, ..., 0,) of cycles o; of
length n such that w =0, - - - gy. Thus g, («) =0 if either

(a) 7 is an odd permutation and r is an odd integer, or

(b) 7 is odd, n is even, and k is even, or

(c)  is even, n is even, and k is odd.

Husemoller [6, Proposition 4] attributes to Gleason the result that g,(w)>0 for
anv even w. The function g.(w was subsequently considered in [1,2,9]. In
particular, Walkup [9, p. 316] conjectured that lim,_,. g.(m,)/(n—2)! =2 where
. M, ... IS any sequence of even permutations without fixed points, with
w, €S,. We will use the character theory of &, to derive an explicit expression
for g () from which Walkup’s conjecture can be deduced. More ger-erally, we
can write down the entire asymptotic expansion of the function g () for fixed k
(provided the number of fixed points of 7 remains small when k=2). The
technique of character theory was also used in [1, Section 3], and some special
cases of our results overlap with this paper. In [2, Corollary 4.8] an explicit
expression for g,(m) is derived, which is simpler than ours, and which can also be
used to prove Walkup’s conjecture. I am grateful to the referee for calling my
attention to [2].

* Partially supported by the National Science Foundation and Bell Teiephone Laboratories, Murray
Hill, NJ.
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2. Character thecry

We first review the results from character theory that we will need. Let G be
any finite group and CG its group algebra over C. If C, 1<i=<t, is a conjugacy
class of G, then let K; =Y., g be the corresponding element of CG. If xL.. . x
are the irreducible (ordinary) characters of G with deg x' = f', then the elements

= K, 1sjst, 1
F ‘Gle : (1)

are a set of orthogonal idempotents in the center of C(, where x! denvies x'
evaluated at any element of C. Inverting (1) yields

K=\l Y XF, )
i=1

where |G| is the number of elements of the class C;. See, e.g., [3, Section 236].
Since the F;’s are orthogonal idempotents, we have for any integer k=1,

t 'i t

~ick % [¥] m=icr £ 4] 1L 3 i

i=1

-GS 5 6] ®

‘UI l= i=1

Now let G=G,. A partition of n may be regarded as a sequence p=
(a;, ... a,,"> of non-negative integers such that ¥, ig; = n. We then write p+—n. We
also write g = (1%, 2%, ..., n®) where terms i{* with g, =0 are omitted and where
exposients ¢; = 1 are omitted. For instance, (0, 1,0, 0, 2)=(2, 5%) is a partition of
12. For later convenience we ealso write (1"°',1) for the partition (1")=
(n,0,...,0), and we set A;,=(1',n—i) for O<isn-1. If p={(a,,...,a,)—n,
then the set of elements of &, with a; cycles of length i forms a conjugacy class
C, of &,. The class C,, of n-cycles is abbreviated C,, so |C,|=(n-D. If
¢:©, —>C is constant on conjugacy classes and if e C,, then we write inter-
changeably ¢(m) or ¢é(p) or ¢(C,). Note in particular that g.(s) has this
property, 0 g (p) denotes g (=) for any < C,. Recall that for each partition A of
n there is a natural way of associating an irreducible character x* of &,
{S, Chapter 7; 7, Chapter 5]. In partlcular the partition (n) corresponds to the
trivial charzcter x, =1 for ail p+—n.

We next state two crucial lemmas involving the characters x*. A proof of
Lemma 2.1 is an immediate consequence of the ‘graphical method’ for determin-
ing the characters of &, [5,Chapter 7.4; 7, Chapter 5.3: 8, Chapter 4]. See
[5,p.205; 8, Lemma 4.11] ir particular. A proof of Lemma 2.2 essentially
appears in [7, p. 139].
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Lemma 2.1. Let 0<i<n-1 and A —n. Then

(—l)la ij’A='\|=(1lsn_i)$

0, otherwise,
where x) is the value of the character x* at any element of C,.
Lemma 2.2. Let 0<i<n-1 and p={a,,a,,...,a,)—n. Then

A= .01‘1)(02)(03). . (a.) PRI
X Z( LG, Nyl :
A

where the sum is over all partitions “r,, 1, ..., r.) of i. In particular, deg x* = f* =

(n i l).

3. A formula for g, ()

It is now easy to give a formula for g ().

Theorem 3.1. Let p={a,,...,a,)—n. Then

TSP it D el VB (7)) (e

— k-1
h i=0(" 1\) ey~ T ra/\ry
i

where {r,, ..., r) ranges over all solutions in non-negativ: integers to Y. jr; = i.

Proof. As above, let C, denote the class of n-cycles in &, and K, =Y ¢, 7€
C®,. By definition of CS,, we have

K= Y g(o)K,.

»h—n .
Hence by (3) and the fact that the characters of ©, are real, there follows
(n—1¥ X\
(p)= L (22) e
Rulp n! pgn f*
Then by Lemma 2.1,
(=D 3 (g_) prp =D $ D
™ ? n i=0 (f)")kvl

Substituting the values x) and f* from Lemma 2.2 completes the proof.

g(p) =

i=0
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Some special cases of Thecrem 3.1 are particularly simple. Putting p =(1")
yields

O T (O I @

the number of ways of writing the identity permutation in &, as a product of
k n-cycles. When k =3, the sum (4) can be evaluated [4, (2.1); 1. Section 3(ii)].
Narnely,

0, n even,
g;(1") =
2(n—=1)%/(n+1), n odd.

A more combinatorial proof of () is essentially given in [1, Corollary 2.2]. It is
alse clear that (n — 1)!g (C,) = gc.1(1"), since m, - + * m, € C, if and only if there is
a (unique) m ., € C, satisfying m, - - - m.m.. = €. Hence

g,(c )___(l’l ___1)!k-1 nil (_1)i(k+l)(n - 1)-(k—\)
LU et 11 . i b

7t i=0

2(C)=2(n—- Y (n+1), n odd. (6)
This same formula is obtained by setting p = (n) in Theorem 3.1. More generally,
we have
~-ji-1 (n—j- ,
g | G S | G
gk(lnwisj): n ‘ Z )

i=0 ("“l)k—l ’
i

for 2<j=n, where we set ("71;1) =0 if i <j.
As a further special case, if n =mj+1, then from Theorem 3.1 we obtain

(n—1)t & (-1 ),,k(r:z)

i=0 (" - 1)"‘1 '
]

In particular, when m=1 we get g (1,n~1)=2(n-1)"""n. Walkup [9,
Theorem 1] gives a combinatorial proof that ng,(1%,2%, ..., n%)= g, (10",
2%, ... ,n%). Thus from g,(1,n~1)=2(n-1)!/n we get another proof of (6). ln
effect, we have another proof of the identity [4, (2.1)]. Some other explicit values
of g,(p) appear in [1, Corollary 2.2; 2, Example 4.9] and can be deduced from
Thecrem 3.1 using the appropriate binomial coefficient identity.

g(l, ™=
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4. Asymptotics

We now derive an asymptotic expansion for g (p), where p ={a,, a,, ..., a,).
When k =2, it will be necessary to assume that a, is not too large. First we
dispose of the easy case k=3.

Theorem 4.1. Fix k=3. Let p={(ay,...,a)—n. If (n—Dk+a,+a,+-:--is

odd, then g (p)=0. If (n—1)k+a,+a,+- - - is even, then for any fixed j=0 we
have

_ k-1 i 1)k A,
gk(p)=2(n 1)' [Z ( l) Xo +O(n_(,'+|)(k_2,).l

= (n;-l)""' 1K

uniformly in a,, as, ..., a, and n =Y ia.

Proof. The assertion for (n—1)k+a,+a,+-++ odd is equivalent to (a)-(c) of
Section 1. Hence assume (n—1)k+a,+a,+- - -is even. Since the partitions A
and A,_; , are conjugate, we have e.g. by [7, p. 71] that X = (=1)%r 0t R,
Thus if we set T, =(-1)*x3/("7")*"", then T;=T,_,_;. Hence

4 2(" - 1)‘1\-—1 (n—2)/2

T, if n is even,
i=0
g&(p)= 1
2(n— 1)k ((n QP2 1 o
L —-—n—— ( i;) T +‘2' T(n—l)/2>, if n is odu.
Thus
ngk(p) J (/21 [n/2] ‘XA‘I
i L LS T.|= Kol .
2(n — 1)1 ;0 iziZHI | i=§1 (n—l)'ﬁl )
i

by Lemma 4.2. For any character x and element g of any finite group G, we have
Ix(g)|<deg x, since x{(g) is the trace of a matrix with deg x rows and columns,
whose eigenvalues are roots of unity. Hence by Lemma 2.2, we have b=,
Thus the error term (7) is bounded by

o3 1 i n :
< + 2=O(n-(l+l)(k—2)).

5$§l(n-‘l>k_2 (n_l)k__z (n"'l)k“
i j+1 i+2

This completes the proof.

Using Lemma 2.2, we can give the asymptotic expansion of g.(p) as a function
. of ay,a,,...,0. We expect the (n— 1 products mym, -+ m to be approxi-
! mately equidistributed through the 3n! allowable elements of €,. Indeed.
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Theorem 4.1, say for j =2, asserts that when k=3,

(a,—l)__u
intg(p) _ D@ -D N2/ °
(n—1)t (n—1)<? (n—l\)"“

2
When k=2, we need a more delicate estimate than |yM<("7"). If F(x)=

Y.s0fix' and G(x) =Y., gx' are power series with real coefficients, write F(x)=
G(x) if f;=g for all i=0.

+ O(n ~3(k »~2)).

Lemma 4.2. If F(x)=0, then

f(x)(1+x’)>F(x)(l+x’+‘)
1-x  1-x

(8)

for all j=0.

Proof. We have

F(x)A+x") Fx)A+x""" _
1-x 1-x

x'F(x)=0,
as desired.

Lemma 4.3. Let p={(a,,...,a,)—n, and let 0<i<Tn/2). Then

Procf. According to Lemma 2.2, we have
n—1
Z X:;"xi — (1 +x)a|-—l(1 _x2)az(1 +x3)¢l‘ .. (1 _(_l)nxn)n“.
i=0 .
Hence

nil lx}\‘\!xi s(1 +JC)a‘(1 +x2)u2 e (] +xn)a“ '
o 1-x

By successive applications of Lemma 4.2, we obtain

"f |t < QoE e T 2014 x?)]
i={ ? 1 - X l —X ’

Since (Vi) =("/*") when j<[n/2], the proof follows.

Theorem 4.3. Letp={(a, a, ..., a,)—n. Ifa+a,+- - isodd (i.e., if p is odd),
then g,{p)=0. If a,+a,+- - is even (i.e., if p is even), then for any fixed j=0 we
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have

2(n—-1! [ LX)y
n iA(,(n—l)
i

uniformly in a,, a,, ..., a, and n=Y ia,.

22(0)= +O(zen 00

Proof. As in Theorem 4.1, we may assume a-+a,+--- is even. Setting T, -
xM(" Y, then as in (7) we obtain

s[“f] X5
i=i+l ("_l).
i

ng,(p) _ '
2(" - 1)! i;, 1;

Thus by Lemma 4.3,

[n/2]
lz'('fz(pl))' Izu .[.ﬁ: 2 (n([z/12)]) . (9)

Denote the left-hand side of (9) by E, and let =(3)/(";"). Then =
O(n """ fori=j+1,j+2,j+3,j+4 and [n/2]. Hence

[n/2]1-1

E<2%n Y, +0(Q%n 12, (10

i=j+5

We claim that =, provided 0<i<[n/2]-2. We will prove only the case
n=2m, i =2k —1 here. The three remaining cases are handled similarly. When
n=2m and i =2k —1, we have by direct calculation

ey 2m!2k - 1)!2m -2k —2)!(2m? —(6k+2)m+4k2—-1)
ek (k—1D'(m—-k+1)2m-1)!

The largest root of the equation 2x>—(6k +2)x +4k*~1=0 is given by
x =33k +1+Vk*+6k +3) <33k +1+k +3)=2k +2.

Hence if m>2k +1, then 2m?>—(6k +2)m +4k*—1>0. Since m >2k +1 is equi-
valent to i <} n—2, the claim is proved.
It follows from (9) and the inequality ;=1 ., that

El' < 2“'"2(3,- s + ri+6) + O(zaln~(i+l,12) _— O(za,n»(i+n/2)’

completing the proof.
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Thus for instance taking j =2 in Theorrm 4.3, we obtain that fcr even p,

— ’ N\ |

wn-| . a-1 (a‘;l)_“z

g(p)="—"| 1+ + +0(2*n~?)
n

n—1 (\n;l)

Since a; =0(n), it follows that if a;,=0 (or in fact a,=o(logn)), then
g,(p)/(n—2)!—2 as n -, which is Walkup’s conjecture [9, p. 316]. In fact, it
suffices to assume only a,=O(logn). For assume a,<B(logn) for all n. Take
j>2B(log2)—1 in Theorem 4.2 to obtain

alpr= 2" [Z 2 roin) | =2 roq

A

analysns Kleitman has shown (private communication) that

[ 5N -

t=3

By a more carefu
h

provided oniy a, =o(n). The key step is an improved version of Lemma 4.3, but
we will not enter into the details here.
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