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Let 2 be a d-polytope, ie., a d-dimensional convex polytope [17, 30]. Let
f: = f{#) denote the number of i-dimensional faces of 2. Thus, f, is the number of
vertices of 2. The vector f{(#) = (f,, fis ..., fa_1) is called the fvector of . What
can be said about such a vector? In 1893 Poincaré proved (with an error corrected
in 1899) the formula

fo—fit+ fa= A (=D Sy =14 (- (1)

generalizing Euler’s famous formula V — E + F = 2. Proofs of (1) were published by
several nineteenth century geometers, but they all contained unjustified assumptions
about the structure of 2. It was not until 1955 that Hadwiger gave a nontopological
proof of (1), and finally in 1971 Bruggesser and Mani {8] vindicated some of the
nineteenth century efforts by showing that their assumptions were valid. For further
information and references, see [17, Section 8.6; 19].

We can go on to ask, What more can be said about the f~vector of a d-polytope?
The acquisition of any sort of definitive result for arbitrary d-polytopes seems hope-
less. However, if we assume that & is simplicial, i.e., every proper face of 2 is a
simplex, then much more can be said. For instance, if 2 is simplicial, then every
{d — 2)-face is contained in exactly two (d — 1)-faces and every (d — 1)-face contains
d {d — 2)Mfaces. Hence, 2f;_, = df;_,, which is a linear relation among the fs inde-
pendent from (1). Before we consider the most general linear relations that can hold
among the f's, we first discuss a generalization of simplicial polytopes to which
much of what we say applies.

Let A(9*) denote the boundary complex of a simplicial d-polytope #. By defini-
tion, it is the abstract simplicial complex whose vertices are the vertices of 2, and
whose faces are those sets of vertices that span a proper face of #. The geometric
realization |A{#)| of # (as defined, e.g., in [34, pp. 110-111]) is therefore a (d — 1)
sphere 57 1. Thus we may consider more generally any {finite) simplicial complex A
on a vertex set ¥V = {x,, ..., x,} whose geometric realization is $”!. We call A a
simplicial {d — 1)}-sphere. It is by no means apparent that there exists a simplicial
(d — 1)-sphere A which is not the boundary complex of a simplicial d-polytope.
Indeed, many earlier geometers simply assumed the two concepts were equivalent. It
was not until 1965 that Griinbaum {16] gave the first example of such a A. The
smallest possible example has 4 =4 and n = 8. (It follows from Steinitz’s theorem
[17, Section 13.1] that an example cannot exist for d = 3)

We can define the f-vector f(A) of a simplicial sphere (or of any simplicial
complex) just as we did for polytopes. Thus f; = n, the number of vertices. The
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Euler characteristic formula (1} continues to hold for simplicial (d — 1)-spheres, as
does the formula 2f, , = df;_,. To state the most general linear relation holding
among the f7's, it is convenient to introduce the numbers

h; = h{A) = E (j :J;)(-l)*"fﬂ, 0<i<d, @)

i=o

where we set f_, =1 Thus hy=1, b, =n—d, and hy =(— 11 — fo + f, —
+ (—1)%,_,}= 1. The vector h(A) = (hy, k,, ..., hy} is called the h-vector of A. It is
easy to invert the equations (2) and solve for the fs, yielding

a d_}
J’;:j‘go (d—i—l)hj.

Thus, knowing h({A) is equivalent to knowing f(A).

To compute the k-vector for particular examples, the following procedure can be
used. We iliustrate it for the four-dimensional cross-polytope, whose f-vector is (8,
24, 32, 16). Write down the f~vector on a diagonal, and put a 1 to the lefi of f,,.

1 8
24
32
16

Complete this array to construct a “difference table,” by placing underneath a pair
of consecutive entries their difference {and bringing down 1 on the left edge).

1 8
1 7 24
1 6 17 32
1 5 11t 15 16

The next row of differences will be h(A).
1 8

1 7 24
1 6 17 32
15 11 15 16
hA) =(1, 4, 6, 4 1)

Note that in this example we have h; = k,;_, (d = 4). In general:

The Dehn-Sommerville equations: For any simplicial (d — 1)-sphere A with A-
vector (hy, hy, ..., k), we have b, = h, ;.

This result was proved by Dehn in 1905 for d < 5, and for general d by Sommer-
ville in 1927, See [17, Sections 9.2 and 9.8; 30, Sections 2.4 and 5.1] for further
details.
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Little further study of the f-vectors of polytopes and spheres was undertaken
until 1957, when Motzkin [32], motivated by the development of linear program-
ming, asked how large f{#) could be, given the dimension d and number of vertices
n of . More precisely, for n > d + 1 let C{(n, d) denote the convex hull of any n
points on the moment curve {(z, 1%, ..., %) € R*:t € R}. The convex polytope C(n, d)
is known as a cyclic polytope, and its combinatorial type is independent of the
choice of n extreme points. Cyclic polytopes were first investigated by Carathéodory
in 1907 and 191! and rediscovered by Gale in 1955 and Motzkin in 1957 (see [17,
Section 7.4]). The following two properties concerning C(r, d} can be proved
without great difficulty:

(i} C(n, d) is simplicial,
(i) f(Cn d)=(I)0si<[xd]-1L

Clearly, no polytope or sphere with n vertices can have more than {;,) i-faces,
s0 cyclic polytopes maximize f;, fi, ..., fi4/2)-1 over all simplicial d-polytopes with
n vertices [or simplicial (d — 1)-spheres with n vertices]. On the other hand, the
Dehn-Sommervilie  equations  uniquely determine  fiz5), ..., f;—, once
fos«vs flyzy-1 are known. It is certainly reasonable to suppose that maximizing
Jo» o5 fiym—1 Will also maximize the other f’s. We therefore say that a simplicial
(d — 1)-sphere A with n vertices satisfies the Upper Bound Conjecture (UBC) if

A < f{(Cln, d)), O=i<d-— 1.

In 1957 Motzkin [32] conjectured that all d-polytopes satisfy the UBC (and it is
easy to reduce this conjecture to the simplicial case), and in 1964 Klee [25] pointed
out that the UBC might as well be made for arbitrary simplicial spheres.

In 1970 McMullen [28] proved the UBC for simplicial polytopes. He first
showed that the UBC for a {d — 1)-sphere A with n vertices followed from the
inequality

—d+i—-1
h,-s(n o ) 0<i<d 3)

He then used the recently proved result of Bruggesser and Mani [8] that the
boundary complex of a convex polytope is shellable. Since simplicial spheres need
not be shellable (the first example being givenn in [12], based on the fact that
shellable spheres are combinatorial®), McMullen’s techniques do not extend to sim-
plicial spheres.

In order to extend the UBC for polytopes to arbitrary simplicial spheres, it is
necessary to introduce the machinery of commutative algebra. Given an abstract
simplicial complex A on a vertex set V = {x,, ..., x,}, let 4 = k[x,, ..., x,] be the
polynomial ring over the field k in the variables x, ..., x,. Define I, to be the ideal
of A generated by all squarefree monomials x; x;, --- x; such that {x, , x;,, ..., x; }
¢ A. Set k[A] = A/I,. If we let k[A]; denote the vector space of all homogeneous

* Danaraj and Klee (9] asked whether all combinatorial spheres are shellable. This was
answered in the negative by Mandel [27, p. 197].
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polynomials of degree i in k[A], then k[A] becomes what we will call a standard
graded k-algebra, viz., a commutative, associative k-algebra R with identity, together
with a collection of subspaces R;, i = 0, satisfying:

(i) R = [] R (vector space direct sum),
i=0
(1) Ry =k,
(iii) R;R, = R,,;,
{(iv) R is generated as a k-algebra by R,
{v) R is a finitely generated k-algebra [which in view of (iv) is equivalent to
dim; R, < «o].
Given a standard graded k-algebra R, an element of R; is said to be homogeneous
of degree i. We also define the Hilbert function H(R, ):N — N of R (where N = {0, 1,

2,..}) by
H(R, i) = dim, R;.

[Condition (v) guarantees that H(R, i) < c0.] An easy computation [36, Proposition
3.2] shows that

H{k[A], =1, i=0,
-t li-1 {4)
= i ) i 0:
E‘ofj( J ) I>

where (fo. fi» .-, Jz— ) 1s the f~vector of A. The generating function
F(R, )= Y H(R, )&
i=0
is cailed the Hilbert series of R. A basic result of commutative algebra due to Hilbert
{see [ 1, Chapter 11] for a simple proof) asserts that

F(R, 3) = thy + hyA + -+ + b, 21 — A9, )

for certain integers h; = h{R) and 4. We assume 4 has been chosen as small as
possible (i.e, hy + b, + --- + h, # 0}, and we then call 4 the Krull dimension of R,
denoted d = dim R. It is not hard to show that dim R is equal to the largest number
of elements of R (or of R,) that are algebraically independent over k. It follows easily
from (2) and (4) or otherwise [40, p. 63] that

dim k[A] =1 + dim A
and
h(k[A]) = h{A).

A collection of d homogeneous elements 8,, ..., §; of R (where d = dim R) of
positive degree is called a homogeneous system of parameters (h.s.o.p) if dim, R/
(¢, ..., 6;) < oo. The Noether normalization lemma asserts that an hs.op. 8, ...,
9, for R always exists, and each 6, can be chosen to have degree one if k is infinite.
(This graded version of the Noether normalization lemma is due to Hilbert.)

We are now in a position to make the crucial definition from commutative
algebra. We will choose the most convenient definition for our purpose, though on
the surface it does not seem to be related to the usual definition found in papers and
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textbooks. However, it is an easy matter to reconcile our definition with the “stan-
dard” one involving R-sequences [38, Corollary 3.2].

DEFINITION. A standard graded k-algebra R (where k is infinite) is called Cohen—
Macaulay if for some (equivalently, every) hs.op. 8, ..., 8, of degree one, we have

H(R/(By, ..., 8), ) = h{R), =0

In particular, k[A] is Cohen-Macaulay if for some hs.o.p. 8y, ..., 8, of degree
one, we have

HG[AY@,, ..., 0, D) = h{4), i=0.

ExampPLE. The algebra k[A] = k[x, y, z}/(xy, xz) is not Cohen—-Macaulay, since
hA) = (1, 1, —1), and we can hardly have H(k[A}/(8,, 8,), 2) = —1.

THeOREM ! [36, Corollary 4.4]. If |A| ~ S~ and k[A] is Cohen—Macaulay, then ‘
the UBC holds for A.

Proof. Let 0,, ..., 8, be an hs.op. for k[A] of degree one, and set S = k[A]/
(8,, ..., 8,). Since H(k[A], 1) =n, we have H(S, I[J=n—d, so § is generated by
n — d linear forms. Hence, H(S, i) cannot exceed the total number of monomials of
degree i in n —d variables. This number is (*~?%*"'). Since k[A] is Cohen—
Macaulay, we have H(S, i} = h{A). Thus h{A) < (*~*5' 1), which is (3).

In order to prove the UBC for spheres, it remains to show that £[A] is Cohen—
Macaulay whenever A is a sphere, It turns out that at about the same time that
THeorEM | was proved, Reisner, working without knowledge of the UBC, found a
complete characterization of those A for which k[A} is Cohen—Macaulay® In order
to state Reisner’s result, recall that for any F € A (including F = (&) the link of F is
defined by

k F={GeA:GnF=,GuFel}
In particular, 1k &J = A. Let f{A) denote reduced simplicial homology with coeffi-

cients in k.

THEOREM 2 [33]. Let A be any finite simplicial complex. The algebra k[A] is
Cohen—Macaulay if and only if for all F € A, H{lk F) = Q unless i = dim (Ik F).

It is well known from topology that if JA| &~ 57!, then for all F € A,
Bk F)=0, i%dim(k F),
=k, i =dim (lk F).
Hence, k[A] is Cohen-Macaulay for all |A] = $7 !, and we conclude:
THEOREM 3 [ 36, Corollary 5.3]. The UBC is valid for all spheres A.

‘ The simul}aneity of THEOREMS 1 and 2 is not quite as coincidental as it may at first appear,
since both Reisner and 1 were heavily influenced by Hochster's paper [20].
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Let us mention for readers interested in understanding the proof of THEOREM 2
that in addition to Reisner’s original argument, proofs also appear in [2, 21, 40]. All
the proofs, except that in [2], use homologica) algebra. For readers familiar with
homological algebra, the most straightforward proof is the one in [40]. (This proof
is due to Hochster but is unpublished by him.)

While we now know that the UBC holds for spheres, we still can ask, What
more cant be said about the fvector of simplicial polytopes or spheres? To this end,
given integers A, i > 0, write

()

where n;>mn,_, > - >n;>j>1. Such a representation always exists and is
unique. For a nice discussion of the significance of this representation, see [13,
Section 8]. Now define

h<i)= n;-l—l + n,'_1+1 +_.'+ n1+l
i+1 i j+1)

and set 0> = 0. Call a vector (hy, ..., hy) € Z¢*! an M-vector (after F. S. Macaulay)
ifhy=1land0<h,, <h" 1<i<d-— 1L

The next result is due essentially to Macaulay [26] but was first stated as such in
{38, Theorem 2.2].

THEOREM 4. Let k be a field. A vector (hy, ..., h) € Z°* is an M-vector if and
only if there exists a standard graded k-algebra R such that H(R, i) = h, ,0xi < d.

COROLLARY. If |A| & §*7 !, then h(A) is an M-vector.
Proof. Follows from THEOREM 2 and our definition of Cohen—Macaulay. ||

The conditions imposed on the h-vector of a sphere by the previous corollary
and the Dehn-Sommerville equations are by no means sufficient to characterize
such h-vectors. In 1971 McMullen [29], putting together all results concerning
Sf-vectors known at that time, produced the following remarkable conjecture, called
the “g-conjecture™ after McMullen’s notation g, for our h; — h;_,.

Conjecture. A vector (hy, ..., h) € Z*" is the h-vector of some simplicial 4-
polytope # if and only if h; = hy_; and (hy, by — By, by — by, ..o, Aoy — Baay- 1) i8
an M-vector. ’

As McMullen noted in [29], the above conjecture could conceivably be valid for
simplicial (d — 1}-spheres, but he felt he did not understand spheres well enough to
have any confidence in such a generalization.

Note that the g-conjecture implies in particular that by < h; < --- < by, for the
h-vector of a simplicial polytope. This weaker result had earlier been conjectured by
McMullen and Walkup {317 and had been called by them the “Generalized Lower-
Bound Conjecture™ (GLBC). This terminology was used because the GLBC implies
the carlier “Lower-Bound Conjecture,” which gives the minimum value of f; for a
simplicial d-polytope with n vertices. The Lower-Bound Conjecture was subse-
quently proved by Barneite [3, 4], but the GLBC remained open. The GLBC also
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included a condition as to when h; = h,, ;. This part of the GLBC remains open at
present.

It turns out that McMullen’s g-conjecture (and therefore the imequality h, <
hy <+ < hyp;; of the GLBC) is indeed true {for polytopes). The “if” part of the
conjecture was proved by Billera and Lee [5, 6] in 1979. They explicitly constructed
the desired 2 by cleverly taking a sequence of stellar and inverse stellar subdivisions
of a cyclic polytope. We will now sketch the proof of the “only if” part of the
conjecture {39]. The proof consists basically of putting together some results from
algebraic geometry. First note that we can assume that our simplicial polytope
satisfies: (a) if dim 2 = 4, then 2 < R? (simply restrict one’s attention to the affine
span of ), (b) the vertices of 2 lie in QY i.e, 2 is a rational polytope (because small
perturbations of the vertices of  do not change the combinatorial type of # since
& is simplicial), and (c} the origin of R? lies in the interior of #. We now note the
following: _

1. In 1970 Demazure [11] and in 1973 Mumford and co-workers [24] defined a
certain class of complex varietics now known as toric varieties. Briefly, they may be
described as follows [10]. Let = be a collection of convex polyhedral cones in a
Q-vector space V, satisfying:

(1) every cone in X has a vertex at the origin,
(2) ifrisaface ofacones e Z,then t € X,
(3) if o, ¢’ € Z, then 0 n ¢’ is a face of both ¢ and ¢ :

We call T a fan. % is complete if { }, . o is the whole space V, and simplicial i
each ¢ € Z is a simplicial cone. Let V* be the dual space to V. For a cone ¢ € Z,
define

e*=1{feV* flo) =0}

Then o* is a convex polyhedral cone in V*, called the dual cone to ¢. Choose a
lattice L in V, and let I* be the dual lattice in V*. Then ¢* n I[* is an additive
monoid in V*; let C[o* ~ I*] denote the monoid algebra of o* ~ I* over C. Define
an affine variety

X,.= X 1n = Spec C[o* A I*].

[Naively, view C[o* n I*] as the quotient of a polynomial ring (whose variables
correspond to the generators of ¢* ~ I¥, which are always finite in number) by
some ideal I. Then X . ;. may be thought of as the variety of zeros of polynomials
in 1] If 7 is a face of g, then X .. can be identified with an open subvariety of X ..
These identifications allow us to glue together from the X,. (as o ranges over %) a
variety over C, which is denoted by Xy and is called the toric variety associated with
Z. (Note that we have defined X, as an abstract variety, in the sense of Weil. See,
e.g., [18, p. 105].) The variety X; does not a priori have an embedding into affine or
projective space, and one of the main results stated below gives a criterion for X5 to
be projective.

Now suppose 2 is a convex polytope (not necessarily simplicial) satisfying condi-
tions {a}-(c) above. For any proper face F of 2, define a cone ¢, to consist of all
rational points that lie on some ray with vertex 0 and passing through F. The set £
of all such o, (together with 0) forms a complete fan. The corresponding toric
variety X (say for the lattice L = 7% is denoted X(%).
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2. A basic result of the theory of toric varieties [10, Proposition 6.9.1; 11; 24]
asserts essentially that for any fan X, X is projective if and only if X = X(#) for
some convex polytope.

A second (easier) result states that when 2 is simplicial, X(#), while not neces-
sarily smooth, has very nice singularities. Namely, X{#) looks locally like affine
space C? modulo a finite (Abelian) group of linear transformations. Varieties with
these types of singularities are known as V-varieties.

3. In 1978 Danilov [10, Theorem 10.8 and Remark 10.9], extending work of
Jurkiewicz, computed the cohomology ring H¥(X(#), C) when 2 is simplicial. All
the cohomology occurs in even degree, ie.,

d
HYX(#), C) = || H¥(X(#), C),
i=0
and there is an isomorphism

H¥X(#), C) —— C[A@) /6. ..., 8) (6)

for a certain h.s.o.p. of C[A(#)] of degree one (which depends on how 2 is embed-
ded in R?. In order for the isomorphism to be degree preserving one must consider
elements of H*(X, C) as having degree i, so §,, ..., §; may be regarded as elements
of H*(X, C). Note in particular that by THEOREM 2, the fact that |A(#)| ~ §* !, and
our definition of Cohen—Macaulay, we have

dim. H¥X(#), C) = h{#). (7

4. In 1976 Steenbrink [41] proved that projective V-varieties ¥ [in particular
Y = X(#) for # simplicial] satisfy the hard Lefschetz theotem. This means the
following. Since Y is projective, we can embed it (as a closed subvariety) in some
projective space P?, Let H be a generic hyperplane in P¥, Then Y n H is a closed
subvariety of Y of complex codimension 1. With any closed subvariety Z of complex
codimension i of an irreducible complex projective variety Y, a standard construc-
tion of algebraic geometry {(e.g., [15] or [14, Chapter 5, Section 4]) associates a
cohomology class [Z] € H*(Y, C). In particular, let @ € H*(Y, C) denote the class
of the hyperplane section ¥ n H. The classical hard Lefschetz theorem (first proved
completely by Hodge) states that if ¥ is smooth and irreducible of complex dimen-
siond, and if 0 < i < d, then the linear transformation

H{(Y,C) 2=, H* Yy, ©) (8)

defined as multiplication by w*~ ' is a bijection (e.g., [15, Chapter 0, Section 7]).
Steenbrink showed that this result continues to hold when Y is a projective V-
variety, though Y need not be smooth. In general, the singularities of V-varicties are
so “tame” that V-varieties behave almost like smooth varieties.

Note that if for all 0 < i < d the map (8) is a bijection, then it follows that for all
0<i<d the map H{(Y,C)-% H'¥Y,C) is injective (and surjective for
d—1l=<i<g2d- 2}

5. We now have at our disposal all the tools to prove the necessity of McMul-
len’s g-comjecture. Let 2 be a simplicial d-polytope satisfying conditions (a}{(c}
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above, and let X = X(#) be the corresponding toric variety. Define the graded
algebra

R = HYX, C)fw),

where (o) denotes the ideal of H*(X, C) generated by the class of a hyperplane
section. The ith degree part of R is given by the quotient vector space

R, = H¥(X, C)wH* (X, C). )

By (6), R is indeed a standard graded algebra and, in particular, is generated by R;.
From (9) we have

H(R, i) = dim R, = dime H(X, C) — dime 0H? " XX, C).
By (7), dims H?(X, C) = h{#). By the hard Lefschetz theorem, if 0 < i < [d/2], then
dimg wH?* "X, C) = dimz H* XX, C) = h;_ (P).

Thus H(R, i) = h{P) — h,_ (P}, 0 < | < [d/2]. Hence by THEOREM 4, (hy, &y — hg,
hy —hy, ..., bz — Brayzy— 1) is an M-vector, and the proof is complete. |}

Two questions immediately suggest themselves, the second of which was alluded
to earlier:

1. Is there a simpler proof? By the very nature of M-vectors it seems essential to
consider graded algebras, in -particular, the algebra § = C[A(#)]/(9,,.... 0.}
However, it might be possible to bypass the theory of toric varieties and prove
directly the existence of a suitable w € §,. If one examines the “standard” proof of
the hard Lefschetz theorem, the following can be seen. Define three linear transfor-
mations a, §, y: $— 5 as follows: a(x) = ox, f(x) =(2i — djx if x € §;, and y is the
adjoint of x with respect to a certain scalar product on S. Then z, §, y generate
(under the bracket operation) the Lie algebra sl,(C). This is equivalent in the present
situation to saying ay — ya = f. Thus to prove the necessity of the g-conjecture, it
would suffice to find = {i.e., w € 5,), § (which is automatic), and y (which involves a
suitable choice of a scalar product on S). Some recent work of Kalai [23] might also
lead to a simpler proof.

2. Does McMullen’s g-conjecture hold for more general simplicial complexes?
In particular, we have the following hierarchy:

simplicial polytope = P,-sphere = combinatorial sphere
=> P-sphere => simplicial sphere = Gorenstein complex. (1o

The relevant definitions are as follows. A P|-sphere is an abstract simplicial complex
A which can be realized in R? by a collection of rectilinear simplices whose union is
the boundary of a ¢onvex polytope. In other words, triangulate the boundary of a
convex polytope into (rectilinear) simplices. (Similarly define P,-ball) A com-
binatorial sphere is a triangulation of the sphere S~ ! which possesses a subdivision
isomorphic to a subdivision of the boundary complex of a d-simplex. The notion of
a P-sphere is due to J. Edmonds and seems to be the most general class of simplicial
spheres avoiding certain pathologies and which lend themselves to proofs by induc-
tion. A simplicial complex A satisfying |A| =~ S9! is a P-sphere if it possesses a
subdivision A’ which is a P,-sphere, such that the subdivision induced on each cell
of A 1s itself a P,-ball. (See [27, Chapter 5.VIL].) Finally, a Gorenstein complex is an
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abstract simplicial complex A for which the ring k[A] is a Gorenstein ring (see [21,
407).

It is known that all the implications in (10} are strict, and we can ask, For which
of them does the g-conjecture hold? In the case of P,-spheres A [possessing a
realization 2 satisfying (a}{c)] we still have a toric variety X(#), but it need not be
projective. Thus Steenbrink’s theorem does not apply. Can one somehow “induce”
the hard Lefschetz theorem on X(#)} from a subdivision 2 of & for which X(£") i1s
projective? (Such subdivisions always exist [10, Section 6.9.2; 24, p. 161].) Let us
also note that Gorenstein complexes are precisely those simplicial complexes for
which the ring § = C[AJ/(#,. ..., 0,)satisfies (abstract) Poincaré duality. Since Poin-
caré duality is essentially a consequence of the hard Lefschetz theorem, it follows
that Gorenstein complexes are the most general ones for which we could expect the
g-conjecture to hold.

Historical Note. The following comments on how the proof of the necessity of
the g-conjecture was found may be of interest. I had realized from my first work on
the UBC (see the sentence after Conjecture 2 in [35]) that the necessity of the
g-conjecture would follow from the existence of a suitable element @ € §5,, where
S = C[A#)AG,, ..., 8. The proof of a rather uninteresting special case was
announced in [37, Theorem 8]. In 1976, Tony Iarrobino brought the hard Lefschetz
theorem to my attention. It was now apparent that onc needed a smooth projective
variety X whose cohomology ring was isomorphic to S [with the grading given by
S; = H*(X, C)]. I had been aware for some time of the theory of toroidal embed-
dings [24] and checked this reference to see whether the varieties X(#) had the right
properties. Three problems arose: (i) I could not understand [24] well enough to tell
whether X(#) was projective, (ii) in any case, no mention was made of H*X(%), C),
and (i) worst of all, X{4) was not necessarily smooth, so the hard Lefschetz
theorem (seemingly) did not apply. There matters rested until the spring or summer
of 1979, when I stumbled upon the paper of Danilov [10] on the new journal shelf
of the MIT library. Remark 3.8 immediately caught my attention. It asserted that
for any triangulation A of the sphere $77 2, the ring § = C[A)/(f,. ..., §,) was the
cohomology ring of a smooth variety X(#)! Thus, the necessity of the g-conjecture
is valid for all spheres for which X(#) is projective. But in reading [10] more
carefully it became apparent that Remark 3.8 was stated rather carelessly. One
needs to assume A is a P,-sphere, not an arbitrary sphere, in order to define X(#).
Moreover, the corresponding variety X{(#) is not always smooth. I therefore asked
some algebraic geometers whether X(#), when projective, could satisfy the hard
Lefschetz theorem, but none knew. Shortly thereafter I took the book [22] out of
the library in order to look at a paper related to a completely different topic in
which I was interested. In browsing through this book I discovered the paper of
Steenbrink [41], with its proof of the hard Lefschetz theorem for projective V-
varieties.” It remained only to ascertain that for convex polytopes the varicties X(2)
were projective. This was accomplished via a conversation with David Mumford on
September 13, 1979, and the proof was complete.

4 Danilov [10] refers to this paper of Steenbrink, but since he does not mention the hard
Lefschetz theorem it did not occur to me to pursue this reference.
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