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Abstract

In these lectures we will provide a brief introduction to the
interactions between commutative algebra and combinatorics, and will
discuss some applications to combinatorics. Our basic object of study
will be graded algebras and graded modules over them. Let IV, IP,
and ZZ denote the set of nonnegative integers, positive integers, and
integers, respectively,

1. DEFINITION. Let &k be a field. By an IN-graded k-algebra (or
graded algebra) we will mean in this paper a commutative, associative
ring R with identity, containing a copy of the field &k (so that R is a vec-
tor space over k, i.e., a k-algebra), together with a collection of sub-
spaces {Rl'}iEN satisfying:
(i} R is the vector space direct sum of the subspaces R;; written
R= 1R,
ey

(ii) R, =k,

(iii) RR;CR;y;,

(iv) R is finitely-generated as a k-algebra, i.e., there exist fin-
itely many elements x;, . . . ,x,€R such that every element
in R is a polynomial (not necessarily unique) in xq,...,x,

with coefficients in k. If we can choose each x;€R; (i.e., R

is generated by Ry), then R is called standard.

An element x€R; is said to be homogeneous of degree i, denoted
deg x=i. In particular, deg O is arbitrary. For any set SCR we let
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H(S) denote the set of homogeneous elements of S. In particular,
H(R)=EL€JNR,. (set union). Denote by R, the ideal i[21'112,- of R. Ttis
easily seen that R is generated by finitely many homogeneous elements.
2. DEFINITION. Let R be a graded algebra. A ZZ-graded R-module
M (or graded R-module) is a unitary R-module (“‘unitary“ means 1-u=u
for all u€M), together with a collection of subspaces {M;};.5, satisfy-
ing:
(i) M is the vector space direct sum of the subspaces M;,
denoted
M=UM,
1%
(ii) RiMjCMf+j’
(ili) M is finitely-generated as an R-module, i.e., there exist fin-
itely many elements Uy,...,u€M such  that
M=uR+...+uR,

Note that condition (iii) implies that M;=0 for all but finitely
many i<0. The notation deg x, H(S), etc., is carried over in an obvi-
ous way to M. Again it is clear that M is generated by finitely many
homogeneous elements.

Let us mention that one can define more generally IN™ —graded
algebras and Z "-graded modules (m>1) in an obvious way, but to
keep the exposition simple we confine ourselves to the m=1 case.
However, many important applications to combinatorics require m>1.

Recall that if k is any noetherian ring (i.e., every ascending chain
of ideals becomes stable), then the Hilbert basis theorem asserts that
the polynomial ring k[x] is also noetherian. From this it is easy to
deduce our first basic result.

3. THEOREM. If the submodule N of M (or ideal  of R) is gen-
erated as an R-module by a subset SCN, then some finite subset of §
generates N.

APPLICATION: Let ¢ be an rxs matrix with integer entries (or 2Z-
matrix). Let € Z ", and define

A={at N*: da=0} )
AB={a€ N*: da=p}

One of the main aims of these lectures is to understand the structure of
A and Ag;. Note that A is a submonoid of IN®, and that Ag is a “A-
module® in the sense that A+ABCAB'
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4. THEOREM.
(a) A is a (finitely-generated monoid, i.e., there exist
L TR o, €A such that A=a;IN+... +o, V.
(b) Ag is a finitely-generated A-module, i.e., there exist
Bl' PR .BJGAB SU.Ch that AB=U(BI+A)

SKETCH OF PROGF.

(a)

(b)

Let R=kA be the monoid algebra of A over the field k. We
may think of R as the subalgebra of A=k[x,...,x,] gen-
erated (or spanned as a vector space) be all monomials

xY¥, y€A (where x"'#:c?r1 SR x;!’, v=(vy . . ..v,)). By
Theorem 3 some finite subset S of the x” generates I. It is
now routine to verify that S generates R as a k-algebra, so

that {y:xY€S} generates A.

Asin (a), let M B"_'kAB be the k-span of Ag, regarded as the
k-subspace of A with basis xV, -yGAB. Thus Mg is an R-
module. LetIg be the ideal of / generated by M. Then I
is generated by some finite subset TC{x": v€Ag}, and one
shows easily that T generates Mg as an R-module. Then
{v:xY€T} generates AB as a A-module.D

5. EXERCISE. Find a submonoid of IV > which is not finitely-
generated. Show that every submonoid of IV is finitely-generated.

The fundamental combinatorial object associated with praded
algebras and modules is their Hilbert series. Define

H(R,n}=dimR,, n€¢ N,
HM n)=dimM,, n€Z.

It follows from the finiteness properties of R and M that H(R,n)<x
and H(M,n)<®. The functions H(R,n) and H{M,n) are called the Hil-
bert functions of R and M, respectively. The generating functions

F(R ,?\)=A§NH(R ,)\"
F(M\)= S HM,m\"

are called the Hilbert series of R and M.

6. EXERCISE. (a) If R=k[x;,...,x,], graded by defining degx;=
a;€IP, then
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FRR.\)= 191(1—x“i)—1

(b) Suppose R is any graded algebra and M a free graded R-module
with a homogeneous basis yy,...,y, where deg y;=b;€ Z . Then

FM A =01+ -2 F@ ).

A submodule N of M (or ideal 7 of R} generated by homogeneous
elements is called a homogeneous submodule (or homogeneous ideal) and
has a natural grading N =‘IE;LN,- given by N;=NNM;. Similarly the quo-

tient module M/N has a natural grading defined by (M/N);=M/N,,
where M;/N; is a quotient of vector spaces. It is clear that
F(M ,\)=F(N,\)+F(M/N,\).

Now let 6 ¢H(R) and define (0:0)=(0:0)y,={ucM:0u=0}. This
is a homogeneous submodule of M. The following lemma is straight-
forward to verify.

7. LEMMA. If 0¢R;, i#0, then
F(M/8M ,\)=\'F((0:0),)\)
1\ '

F(M )=

Using Lemma 7 and induction on the number of generators of R,
the following basic result is obtained.

8. THEOREM. lLet R be generated by homogeneous elements of
degrees a,,...,4,>0. Then

F(M,)\)=P(M,)t)‘I:II(1—Ra‘)_1, 2

where P(M,\)¢€ Z [A, 271 (i.e., P(M,)\) is a polynomial in X and A ™!
with integer coefficients). If M has no elements of negative degree
(e.g., if M=R), then P(M,A)€ Z [A].

Standard results concerning coefficients of rational generating
functions [15] yield:
9. COROLLARY. let R be as in Theorem 8.  Let
m=LCM{ay, . . . .a;}. Then there exist polynomials
P (n),...,P,_;(n) such that H(M ,n)=P;(n) whenever n=i (mod m)
and n is sufficiently large {denoted n>>0). In particular, if R is stan-
dard, H(M ,r) is a polynomial for n>>>>0, the Hilbert polynomial of M.
If M,;=0 for i<0, then H(M,n) is a polynomial for a/l n=0 if and only
if deg P(M ,\)<a;+...+a,, in the notation of (2).

10. APPLICATION. Let ACIN™ be the set of all nxn IV-matrices
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such that all row and column sums are equal. A matrix a={a;)€A
may be regarded as an J/Vsolution to the system of equations
o =Za;=ajytapt... +ay,, 1=<j=n, s0 A is a monoid of the type

arising in Theorem 4. Define a grading on R=kA by setting deg
x*=ay;+ap+... +ay,, the line sum of the matrix «€A. Then a basis
for R; consists of all monomials x* of degree i, so H(R,i) is the
number of nXn IN -matrices with every row and column sum equal to
i. This number is usually denoted by H,(i). According to the
Birkhoff-von Neumann theorem (e.g., [11, Th. 5.2]), every a€A is a
sum of permutation matrices. This is equivalent to saying that R is
standard. By Corollary 9, it follows that H,(i) is a polynomial in i for
i>>0. It can be shown (as was first done in [14]) that H,(i) is a poly-
nomial for all i=0, of degree (n—l)z. Some further properties of
H, (i) will be discussed later.

11. EXERCISE. Let QCIN™ be the set of all nxn symmetric N
-matrices with all row sums equal. Let § be the subalgebra of R=k{
generated by R,+R,. Show that R is a finitely-generated S-module
(though R#S when n=7). Deduce that if §,(i) is the number of a€{)
with line sum i, then there exist polynomials P,(i) and Q,(i) such that
§,()=P,(H+(—-1)Y0,(i) for i>>0. (Again, it can be shown that
equality holds for all i=0.)

We now come to a lemma of crucial importance for further pro-
gress. The analogue for non-graded rings appears in [7, Thm. 82],
while a proof for the graded case stated below may be found in [1,
Lemma 2.2]. This lemma will allow us to bypass techniques from
homological algebra normally used to proved many of the subsequent
results.

12. LEMMA. Let R be a graded algebra and M+#0 a graded R-
module. Suppose every x€H(R,) is a zero-divisor on M (i.e., for
some 0#u €M, xu=0). Then for some 0#u€H(M), uR ,=0.0

Now let M be a graded R-module. By the lemma, exactly one of
the following two possibilities holds: (a) some 6 €H(R ) is a non-zero
divisor (NZD) on M, or (b) some u€¢H(M) satisfies R #=0. In either
case we may consider the quotient module M/6M or M/uR. In case
(a}, M will be a free module (not necessarily of finite rank) over the
ring k[8]. A set BCH(M) will be a basis for M as a k[8]-module if and
only if the image of B in A//0M is a k-basis for M/6M. In particular, if
deg 8=a then
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F(M,\)=(1-\"1F(M/eM ). (3)
In case (b), uR is a one-dimensional vector space and if deg u=»b then
F(M\)=N+F(MuR ). (4)

Now apply (a) or (b), as the case may be, to M/0M or M/uR, and
form a new quotient module. As we continue this process, we obtain a
sequence of smaller and smaller quotient modules of M. By the
ascending chain condition on submodules, this process eventually ter-
minates in 0. We then say that M has been “peeled. “ Using (3) and
(4) the Hilbert series of M can be written down by inspection from the
peeling. Moreover, we obtain a canonical form for writing the ele-
ments of M.

13. EXAMPLE. Let A=N 2—{(1,0)}. Then the monoid alpebra
R=kA is given by R =k[x2,x3,y,xy]. Now note the following:

{a) yisanNZDof R,

(b) R/¥R is spanned by {1,x,x2, . .. .xy}s0xyR,=0inR/R.

(c) x*is an NZD of R/(yR +xyR).

(d) S=R/(yR+xyR+x°R) is spanned by {1,x3}, so xR, =0in 5,

and 1-R, =0 in §/x35.

It follows that every element f of R can be written uniquely in the

form

F=xyp 1) +pa(x%,y)+x3ps(x%,y),

where p€k[x;] and p,, p3€k[x;,x3]. (In effect, we have decomposed
the monoid A into the disjoint subsets (1,1) + (0,1) v, (2,0) W +
(0,1) IV, and (3,0) + (2,0) N + (0,1) IN.) We also see that

% 142 _ 1
I=A 0 @-0Na-2%) -0

14. EXERCISE. Peel the rings k[x,y,z,w}/(xz,xw,yw) and
k[x,v,z,wl/(xw,yw,zw,xyz) (with the standard grading), and compute
their Hilbert series. Express each Hilbert series as a fraction reduced
to lowest terms.

The following result is immediate from the way F(M,\) is com-
puted from a peeling of M,
15. COROLLARY (and definition). Let M be a graded module.
Then the order to which A=1 is a pole of F{M,\) is equal to the total
number of NZD's encountered in peeling M. This numher is called the
Krull dimension of M, denoted dim M.

F(R,\)=
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It is not difficult to show at this stage that dim M is also equal to
the maximum number of (homogeneous) elements of R/Ann M which
are algebraically independent over k, where Ann M={x€R: xM=0}.
Note that Ann R=0.

If 64 .... 0,€H(R,) then it is «clear that dim
M/(8;:M+... +6M)=dim M—r. If equality holds we call 8, . . . ,8,
a partial homogeneous system of parameters for M. Clearly r=d=dim
M. If equality holds, we call 6;, ..., 6, a homogeneous system of
parameters (h.s.0.p.).

16. THEOREM. let®,, ..., 8,€H(R,), and let M be a Z-graded
R-module. The following conditions are equivalent:
i) 6y .... 0, are an h.s.0.p.
(i) 6. .... 8, are algebraically independent over k in R/Ann
M, and dim M/(8;M+...+08,M)=0.
(iii) @0;. ..., 8, are algebraically independent over k in R/Ann
M, and M is a finitely-generated k[6,, . . ., 8,]-module.
(iv) d=dim M and M is a finitely-generated k[6;, . . ., 0,]-
module.
17. THEOREM. K 8,, . .. ,b8; are the NZD’s encountered in a peel-
ing of M, then 8;, . . . .08, is an h.s.o.p. for M. Moreover, if R is

standard and k infinite, we can take each deg 6,=1.

Theorem 17 is essentially the “Noether normalization lemma“,
which guarantees the existence of an h.s.o0.p. for M.

The process of peeling M begins with.the construction of a
sequence 6, . . ., 8,€H(R ) (which may be void) such that @, is an
NZD in M/(0;M+...+6,_ M) for 1=<i<r. Such a sequence is called a
homogeneous regular sequence or homogeneous M-sequence. The length
of the longest (homogeneous) M-sequence is called the depth of M,
denoted depth M. Clearly O=<depth M= dim M. If depth M=dim M
(i.e., if some h.s.o.p. for M is an M-sequence), then we call M a
Cohen-Macaulay R-module. From Lemma 7 we deduce the following
“combinatorial “ characterization of M-sequences.

18. THEOREM. Let 0y, ... ,0,€H(R,), say deg 0,=a;>0. Let
N=M/(6;M+...+8M). Then 6, .. .,0, is an M-sequence if and
only if

F(M,\)=F(N. M1~ (5)

If M is Cohen-Macaulay and €, ...,8; is a maximal
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homogeneous M-sequence, then N=M/(8;M+...+6,M) is a finite-
dimensional vector space over k. If (the images of)
Ny - - v n,€H(M) form a k-basis for N, then every u €M can be writ-
ten uniquely in the form

'
uzig,l-n,-pi(el, ... ’ed)’

where p;€k[x,, . . ., x;]. In other words, M is a finitely-generated
free module over k[8,, . . ., 8,], with basis 7, . . . . 7, Moreover,
if deg 8;=q; and deg n;=b;, then

F(M,\)= [};:kb‘]lfl(l—ka‘)_l

We should also mention two ‘‘uniqueness” theorems concerning
maximal M-sequences.

19. THEOREM. (a) Any two maximal M-sequences have the same
length; (b) If M is Cohen-Macaulay, then every h.s.o0.p. is an M-
sequence.

20. EXAMPLE. Let R=k[x,y)/(x%,xy), with the standard grading. If
| k| == then by Theorem 19 there is an h.s.0.p. for R of degree one.
Alternatively, it can be easily seen that for any k. the element y forms
an h.s.0.p, for R. Now

1 1+A=2°

H(R )= 1-x +X %

If R were Cohen-Macaulay, then 1+h—)\2=F(R/BR,)\) for any
h.s.0.p. 0 of degree one (since by Theorem 19 all h.s.0.p.’s are R-
sequences). Clearly H(R/8R,2)=—1 is absurd, so we conclude that R
is not Cohen-Macaulay. Although it sometimes is possible to show a
ring or module is not Cohen-Macaulay by looking at its Hilbert series,
in general one cannot deduce Cohen-Macaulayness from the Hilbert
series alone. For instance, Exercise 14 gives two rings with the same
Hilbert series, one Cohen-Macaulay and one not.

It often is an interesting combinatorial problem to find explicitly
the decomposition

M=11mk[ey, . ... 0,4
of a Cohen-Macaulay module M, where 6,, . . . .0, is an h.s.o0.p. and
Ny - - - .M, a k-basis for M/(6;M+...+8,M). For instance, let
R=k[x;, ..., x,), with deg x;=1. R is clearly Cohen-Macaulay since

X{y...,%, is an h.s.o.p. and an R-sequence. Now let 8; be the i-th
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elementary symmetric function in x;, . . ., x,. It is not hard to see
that 8,, . . . .8, is an h.s.0.p. for R, so by Theorem 19 they form an
R-sequence. Hence

for certain m;€H(R). Since deg 8;=i, we have

3 %8 m_ (1I=NA=MD. .. (A=A
=1 (1-z\"

=(1+N)AFAFAD) AR+ - - - 2T, (6)

Garsia [2, §6] has shown that for each permutation w=a,a,...a, in the
symmetric group S, of all permutations of {1,...,n}, if we define

z alaz" ﬂj

4> .
then {n_:m€S,} is indeed a k-basis for R/(64, . . . , 6,). In particular,
we see from (5) that
AT =1+ AN QA+ AT N
w(.!‘n

where o(w)= 3 j is the major index or greater index of m. Equation
ﬂ->d +1

(7) is a well- known result of MacMahon [8, §104] [13, p.97], s0 here

we have an algebraic elaboration. It would be very interesting to

extend the result of Garsia to arbitrary permutation groups. Specifi-

cally, if G is a group of permutations of {1,...,n} and R=k{x,,...,x,],

then define

RO={fER: f(x 1)+ sZn(n) =F(X1,...,x,) for all WEG).

The elementary symmetric functions 84, . . . . 9, still form an h.s.o0.p.
for R®, and RC is known to be Cohen- Macaulay (e.g., [18,
Thm.3.2]). The problem of finding a k-basis for R /(01 ce0,)

may be regarded as a subtle elaboration of Polya’s enumeration
theorem. The result of Garsia concerns the case when G is the trivial
group of order one. Some interesting additional cases appear in [3].

Suppose M is a Z-graded Cohen-Macaulay R-module, with
0. ..., 8, an h.s.o.p. For any Z-graded R-module N, the socle of
N is defined by
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soc N={u€N: uR . =0}
It is a finite-dimensional vector space. Now define
type M =dim, soc (M/(61M+ " edM)]

It can be shown {using homological algebra) that type M is independent
of the choice of 84, . . ., 0,

21. OPEN PROBLEM. Find an elementary proof of this last state-
ment.

In the case M =R, we say that R is Gorenstein if type R=1. Sup-
pose R is Gorenstein and let §=R/(8;, .. . ,08,) for some h.s.o.p.
0. ..., 6,. Then the grading of § looks like

S:S0+S1+...+S

5

where §;#0, for some s=0. Since §,Csoc § and type R=1, we have
dim,S.=1. The map ¢;:S5;X8,_;-5, defined by ring multiplication is
easily seen to be a perfect pairing of §; and §;_; (since soc R=5,),
which means in particular dim,S;=dim,S,_;. It follows from (5) that if
a;=deg9; and
ho+h A+ +h\°
F(R,\)= p (8)
I(a-x")

then hf=hs—f'

22. EXERCISE. Show that the condition h;=h,_; is not sufficient for
a Cohen-Macaulay IV -graded algebra R to be Gorenstein, by consider-
ing the example R =k[x,y)/(x?,xy,y%), with the standard grading.

In view of the above exercise, it is somewhat surprising that if R
is a Cohen-Macaulay domain in (8), then h;=h,_; is necessary and suf-
ficient for R to be Gorenstein {17, Thm. 4.4]. This can be a useful
combinatorial tool for showing rings are Gorenstein.

The symmetry h;=h,_; of Gorenstein algebras is a manifestation
of a deeper duality valid for any Cohen-Macaulay M (or, with some-
what more work, even non-Cohen-Macaulay M). Namely, if M is
Cohen-Macaulay with h.s.0.p. 6y, . ... 8, then let
§=k[06,, . . . ,8,]CR and define

Q(M)=Homy(M,S),

the set of §-module homomorphisms ¢:M~5. We can give (}(M) the
structure of an R-module by defining (xd)(u)=d&(xu), for
x€R, $cQ(M), ueM. Using homological algebra it can be shown that
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Q(M), as an R-module, is independent of 8, . . . .8, We call Q(M)
the canonical module of M. The minimum number of generators of
QM) is type M, and (when M=R) QU(R)=R if and only if R is Goren-
stein. There is a natural grading on (M) so that

F(Q(M),\)=(—1)4F(M,1/)) (as rational functions).

Q(M) is a kind of “dual“ object to M, and when M has combina-
torial significance we would expect (M) to have some sort of ‘“‘dual®
significance. For instance, let R=kA be the monoid algebra of the
monoid A of (1). Assume without loss of generality that ANIP #{J.
Hochster [5] has shown that R is Cohen-Macaulay. The canonical
module Q(R) can be shown [17, Thm. 6.7] to be isomorphic to the
ideal I of R spanned be all monomials x® with a€ANIP°. In particu-
lar, R is Gorenstein if the vector w=(1,1,...,1)€A, since then as R-
modules we have I=x“R=R. If we apply this observation to the poly-
nomial H, (i) of Application 10, then (with the use of some standard
properties of rational generating function [17, Cor. 4.6]) we obtain
that

H (-1)=H (-2)=...=H (-n+1)=0,
Ho()= (= 1" "M (~n =),

Let us turn to the problem of obtaining restrictions on the Hilbert
functions of various classes of graded modules. We will here concern
ourselves only with the case of standard graded algebras. If such an
algebra R is generated by elements xq, . . ., x, of degree cne, then R
has a k-basis B consisting of monomials in the x;'s, and H{R,n) is equal
to the number of monomials in B of degree n. Now choose B as fol-
lows: Define a linear ordering on the set M of all monomials in
X1,...,X, by the rules: (a) y;<y; if deg y;< degy;, and (b) y;<y, if deg
y;= deg y; and y; precedes ¥; in reverse lexicographic order (with
respect to the order x;<...<x, of the x;’s). E.g., if r=3 and we set
x=xj, y=x,, z=x3, then the ordering begins

1<.::<y<z<x2<xy<y2<.tz<yz<z2
<x3<xzy<xy2<y3<xzz<....
Now choose the elements y;,y;,¥3,... by letting y;,; be the least

monomial which is linearly independent from y;,...,y;. The basis B
obtained in this way is readily seen to be an order ideal of monomials,

. . b b
i.e., if x‘{l...x:f’EB and 0=b;=g;, then xll...xr’eﬂ, Conversely, if B

is any order ideal of monomials and B’=M—B8, then B is a k-basis for
k[x:,...,x,.)/(B"). where (B") denotes the ideal generated by B’.
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A theorem essentially proved by Macaulay and generalized by
Clements and Lindstr6ém (see [4]) characterizes the possible vectors
{(hg,hy,...) for which h; is the number of monomials of degree i in an
order ideal B of monomials. It follows that this same condition charac-
terizes the Hilbert functions of standard graded algebras. The condi-
tion of Macaulay is most succinctly (but certainly not least obscurely)
stated as follows: Given integers A,i>0, write (uniquely)

NN

where n;>m;_y> - - - >n;=j=1, and define

= [ni+1] [ni-1+1] [Tj+1]
i>_ .
h =li+1 + i + - + i+1 )

Also set 05" =0. We then have;

23. THEOREM. Letk be any field. The following two conditions are
equivalent on a sequence (hg,hq,...) of integers:

(i) There exists a standard graded k-algebra R satisfying
H(R,n)=h, for all n=0.
(i) hy=1and 0sh, <k " for all n=1.
Let us call a sequence (hg,k,,...) (finite or infinite) an M-vector
(after Macaulay) if it satisfies either of the above two (equivalent) con-

ditions. We now have from Theorems 17 and 18 (leaving aside a
minor technicality arising when k is finite):

24. COROLLARY. Let k be any field, let d=0,and let H: IN~IN .
The following two conditions are equivalent:

(i) There exists a standard Cohen-Macaulay graded k-algebra of
Krull dimension d with Hilbert function H.

.(if) For some s=0 we have

Ha" hothh+...+h\'
n =
Eo (l—k)d
where (hg, hy,...k;) is an M-vector.
25. OPEN PROBLEM. Find a “nice“ characterization of the Hilbert

function of a standard Gorenstein graded k-algebra. See [17, §4] for
further information.

The above problem can be reformulated as a problem in linear
algebra. Let M; denote the set of all monomials of degree i in the vari-
ables xq,...,x,,. Fix an integer s=0 and a nonzero function o: M ~k.
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For O0=<j=s let AW pe the matrix with rows indexed by M; and columns
by M,_;, defined by Alg{',)=o'(uv). Let h;=rank A;. Then for any d=0
there is a standard graded Gorenstein k-algebra R of dimension d satis-
fying

F(R )= (hot B A+ +EA)(1-2) 74,

Conversely, the Hilbert series of every standard graded Gorenstein k-

algebra arises in this way. For instance, suppose s=4 and o is chosen

so hy=rank AD=m. How small can h,=rank A? be? Letting

F(m)=min hy, it is known that f(m)=m for m=<5, f(13)<13 and
%-6?/3 < lim inf f(m)m ¥} < lim inf flm)m=¥3=<623,

Does f(6)=67 Does lim f(m)m~ %3 exist, and if so, then what is this

limit?

Among the many applications of Corollary 24, we mention here
only its connection with simplicial complexes. By a simplicial complex
on the vertex set V, we mean a collection A of subsets of V satisfying
(i) {x}€A for all x€V, and (ii) if F€A and GCF, then GEA. An ele-
ment F of A is called a face, and the integer |Fi—1 is called the
dimension of F, denoted dim F. The dimension of A is defined by

dimA=max{dim F: FcA}.

Let d=1+dim A throughout this discussion. Let f,=f(A) be the
number of i-dimensional faces of A and call the vector
f=rA)=yof1 - ... fq—1) the fovector of A. Set n=fy=|V|. Itis
an interesting problem to obtain as much information as possible about
the f-vector of various classes of simplicial complexes. For instance, a
celebrated theorem of Kruskal and Katona (see [4] for a nice discus-
sion) can be used to completely characterize the f-vector of an arbitrary
simplicial complex.

To proceed further, let |A| denote the geometric realization
(e.g., [12, pp. 110-111]) of A - it is a topological space obtained,
intuitively speaking, by regarding the faces of A as vertices of actual
Euclidean simplices and sticking these simplices together appropriately.
If now |A| is a (d—1)-dimensional sphere $%~1, then Motzkin and
Klee raised the question of maximizing f,(A) when n=f; and
d=1+dim A are fixed. {(Motzkin was concerned only with the more
restrictive class of simplicial convex polytopes, and Klee realized
Motzkin’s conjecture could be made just as easily for spheres.) See [16]
for references. They conjectured that a certain known simplicial com-
plex A(n,d) (the boundary complex of a cyclic polytope C(n.d))
achieved the maximum. McMullen proved Motzkin's original
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conjecture (for simplicial polytopes), but the case of spheres remained
open.

The key step in proving this “Upper Bound Conjecture for
spheres* (UBC) is to associate a certain graded algebra R, with any
simplicial complex A. Let A=k[x,,...,x,] be the polynomial ring in
the vertices V={xy,...,x,} (with deg x;=1), and define I, to be the
ideal of A generated by all squarefree monomials XiFiy " X for which

e x,-j} EA. If F(AY=(fp - . .. f4—1) then the Hilbert function
of R, is easily seen to be

HR 1,m=0
( A‘m)_' 41 m—1 .
; ,m>0
=0
In particular (see Corollary 9), dim Ry=d=1+dim A.

Since H(Rs,m) is a polynomial of degree d—1 for m>0, it fol-
lows that there exist integers hg,hq,...,h, such that
S H(Rp,m)N"=(hg+h A +...+B AN (1-2) "7,
m=0
The vector h(A)=(hgky, . . .. h;) is called the h-vector of A. In
McMullen’s proof of the UBC for polytopes, he showed essentially that
if | Al was a sphere then the UBC for A followed from the inequality

n—d+i—1
h=< i , 0=i=d.

26. PROPOSITION. Let |A|=89"1, with fo(A)=n. If R, is Cohen-
Macaulay, then the UBC holds for A,

PROOF. If R, is Cohen-Macaulay, then by Corollary 24 h(A) is an

M-vector, so there is an order ideal B of monomials for which

h;=card{y¢B: deg y=i}. Since h;=n—d, this means that &, cannot
n—d+i—1

exceed the total number ; of monomials of degree i in n—d

variables, and the proof follows.O

To complete the proof of the UBC for spheres, it remains to show
that R, is Cohen-Macaulay whenever |A| is a sphere. A stronger
result was proved by Reisner [10] using homological methods; he
characterized all simplicial complexes A for which R, is Cohen-
Macaulay in terms of the homology groups of various subcomplexes of
A. Although several other proofs of Reisner's theorem have since
been found, none are really simple. Hochster {6] in fact has shown
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that if |A] is a sphere then R, is Gorenstein. In particular, we have
h;=h,_;, which is equivalent to the Dehn-Sommerville equations (e.g.,
[9, p.171, eqn. (6)]).

An outstanding open problem in this area is to characterize com-
pletely the possible f-vectors (or k-vectors) of spheres. For simplicial
polytopes this was done using deep results from algebraic geometry in
addition to Reisner’s theorem [19], but it remains open whether this
characterization is valid for all spheres.

We have only given the briefest glimpse in these notes of the
many fascinating connections between commutative algebra and com-
binatorics. In particular, we have omitted all reference to homological
concepts, including the fundamental Hilbert syzygy theorem.
Nevertheless, it is hoped that we have managed to convey some of the
flavor of the subject and to make it more accessible to combinatorial-
ists.
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