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1. INTRODUCTION
Let Gn = GL(n,C) = GL(Vn) denote the group of all invertible
linear transformations A:Vn+Vn, where Vn is an n-dimensional complex

vector space. Once we choose a basis for Vn we can regard Gn as the

group of nonsingular nXn complex matrices. A (linear) representation of
Gn of dimension m is a homomorphism ¢:Gn+Gm. We call ¢ a polyromial

(respectively, rational) representation if (after choosing bases) the

matrix entries of ¢(A) are fixed polynomials (respectively, rational

functions) in the matrix entries of A.
2 2

fab a 2ab b
L)

ac ad+bc bd
2

For instance, the map

(1)
c 2cd d

is a polynomial representation of G2 of dimension three, while

a b

—2 3 (ad-bo) "t (2)
¢ 4

is a rational representation of dimension one. Henceforth, all represen-

tations in this paper are assumed to be rational.

The theory of such representations has close connections with
combinatorics, and our object here is to present an overview of this
subject from the combinatorial viewpoint. We first will state without
proof the basic results (which may be gleaned from such sources as
Hamermesh (1962), pp. 377-391; James & Kerber (1981), Ch. 8; Little-
wood (1950), Ch. X; Macdonald (1979), pp. 74-84; and Weyl (1946),

Ch. IV), and then proceed to the combinatorial ramifications.
The first result we need is that the (rational) representations

of G, are completely reducible (i.e., G, is a reductive group).

This
means in effect that every representation ¢>:Gn->Gm can be decomposed into
irreducibles, i.e., if Gm =

GL(V), so that we may regard G, as acting
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on V, then V = Vl D - O Vr where each Vi is nonzero and invariant
under Gn, and no Vi has a proper Gn—inva;iant subspace. Although the
V;'s need not be unique, the multiset {¢l,...,¢n} of irreducible
representations ¢i:Gn+GL(Vi) is unique up to equivalence. Thus to
determine ¢ up to equivalence, it suffices to describe the multiplicity
of each irreducible representation of Gn in ¢.

Suppose AEGn has eigenvalues el,...,en. Then there exists a
a a
multiset M¢ of m Laurent monomials u(x) = %, ...xnn, a; € %Z , inde~
pendent of A, such that the eigenvalues of ¢(A) are given by the multi-
set {u(el,...,en)lu e M ¢}. For the representations ¢ and p of (1)
X ,x2} and M =
2'72 0

and (2), the reader can check that Af¢ = {xi, X

-1 -1
{xl x, }. The Laurent polynomial f¢ = Lu (which is a symmetric
uel

function of xl,...,xn) is called the character of ¢; clearly
f¢(el,...,en) = tr ¢(4),

where tr denotes trace. The character f¢ uniquely determines ¢ up to
equivalence. In other words, f¢ can be written uniquely as a nonnegative
integral combination of irreducible characters. We now wish to describe
the irreducible characters of Gn' First we reduce this probler to
polynomial representations.

1.1 Theorem. Any rational representation ¢:GLn->GLm has the form
$(R) = (det A)—r¢'(A) for some r ¢ % and some polynomial representation
¢'. ¢ is irreducible if and only if ¢' is irkeducible, and

f¢(xl,...,xn) = (xl...xn)—r f¢,(xl,...,xn).
Now let A = (Al,...,kn) be any partition into < n parts, i.e.,

Ali--- 2 A, 20, Ai € 2 ., The number of (positive) parts Xi>0 of A

is called the length of X, denoted £(\). We also write {AI = A Feeot) .
—— n

Following Macdonald (1979), let sk(xl,...,xn) denote the Schur iunction
corresponding to A in the variables KpreeosX o It has the following
combinatorial definition. Write down a left-justified array whose
entries are the numbers 1,2,...,n (with any rmultiplicities), with Ai
entries in row i, such that the columns are strictly decreasing and rows

weakly decreasing. W%ith such an array T ( called a tableau of shape X
a a

and largest part < n) associate the monomial m(T) = Xl e eX n, where a,

n i

i's appear in T. Then sx(x) = SA(xl""’xn) is defined to be I m(T),
T
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summed over all tableaux T of shape A and largest part < n. Though not
obvious from the definition, sk(x) is a symmetric function of Xyreoor¥ .
Example. Take A = (2,1), n = 3. The appropriate tableaux are

21 22 31 33 32 33 32 31
1 1 1 1 2 2 1 2

Hence SZl(xl'x2'x3) = xix2+xlx§ + xix3 + xlxi + xix3 + x2x§ + 2xlx2x3.

The main result on the polynomial characters of G _ is the following.

1.2 Theoremn, Let A = (Xl,...,kn) be a partition, £(A)<n. Then
the Schur function sA(xl,...,xn) is an irreducible polynomial character
of GLn, different A's yield different characters, and every irreducible
polynomial character has this form.

We will denote by P, the representation of G whose character is

Sy» In other words, sy = fpk.

The Schur functions sk(xl""'xn)' 2(A\)<n, form a =z -basis for the
additive group of all symmetric polynomials in ESEREEVEN with integer
coefficients (Macdonald 1979, p.24). Thus every such polvnomial £ is a
virtual character (= difference of two characters) of Gn' and expanding
f in terms of Schur functions is equivalent to finding the multiplicity
of each irreducible character of Gn in £.

Remarks on some other groups. The representations of the groups

U(n), SL(n,c ), and SU(n) can be obtained easily from those of G =
GL(n,C ). Since G, is a reductive algebraic group with maximal compact
subgroup U(n) it follows from general principles that the rational rep-
resentations of G, and U(n) coincide. More precisely, distinct irre-
ducible representations of Gn restrict to distinct irreducibles of U(n),
and every irreducible representation of U(n) arises in this way.
Regarding SL(n,C ), suppose ¢:Gn—>Gm has character SA(X)' By our

definition of Sy A

n
5y (%) = (xl...xn) SA*(X), (3)
= - - - * . t
where A* (Al An’ Az An""’xn—l An,O). If ¢ 'Gﬁ+Gm has charac ei
n
¢*, then the right-hand side of (3) is just the character of (det) ¢*.
A

Hence ¢ = (det) n¢*, so that ¢ and ¢* restrict to the same representation

of SL(n,C ). But except for this, the irreducible representations of

GL(n,C ) and SL(n,C ) coincide. More precisely:
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1.3 Theorem, Let A = (Al,...,kn_l) be a partition into < n-1
parts, Then the Schur function S%(xl""’xn) is an irreducible poly-
nomial character of SL(n,c ), different A's yield different characters,
and every irreducible polynomial character has this form.

We will call any Laurent polynomial f(xl,...,xn) a character of
the representation p:SL(n,C %+Gm if tr p(a) = f(el,...,en) for all
AESL(n,C ) with eigenvalues el,...,en. Since el---en = 1, the <haracter
is not unique (as it was for Gn)' The character fp of p is, however, a
uniquely defined element of the quotient ring A(xl,...,xn)/(xl---xn~l),
where A(xl,...,xn) denotes the ring of symmetric polynomials with integer
coefficients in the variables KpreserX . Thus frequently we will carry
out our computations with characters of SL(n,c¢ ) in this quotient ring.

Finally, SU(n) bears the same relation to SL(n,C ) as U(n) does

to GL(n, C).

2, SOME EXAMPLES
Let us consider some "naturally occurring" representations of Gn

and try to compute their characters. First we have the defining repre-

sentation ¢:Gn->Gn given by ¢(A) = A. If A has eigenvalues el,...,en
then ¢$(A) also has these eigenvalues. Hence tr ¢(a) = el+---+en and
£,(x) =x +ec-+x . Since for each 1<i<n there is exactly one way to put

¢ 1

i into the shape A = (1) to forr a colurn-strict plane partition, we

have s1(x) = X teeodx o Hence f¢ = s, and ¢ = ¢l.

Suppose ¢:Gn-+Gm = GL(V ) is any representatlon. Choose a basis
Zl,...,zm for the vector space Vm. Let S (V ) denote the vector space
of all homogeneous polynomials of degree k in the variables ZyreeerZ.

m+k 1

(
Any BeG acts on Sk V ) by the rule B'g(zl,...,zr) = g(le,...,Bzm) S0
Wb

i k
Thus dim S (Vm) ), and S (V ) is the k-th symmetric power of V .

we have a representatlon of G on Sk(Vm), i.e., a homomorphism
G,>GL sk v s .
(s ( )) G(m+k-l)
k . ’
if AEG, and ges (V) then A*g = ¢(A)*g. The resulting representation is

ok

denoted S ¢ G *CL S (Vm)). It is an important and difficult problem

k : .
Hence Gn acts on S (Vm) by composition, i.e.,

(which comes close to subsuming all of classical invariant theory) to
decompose Sk¢ into irreducibles.

The problem of decomposing Sk¢ (up to eauivalence) may be stated
in combinatorial terms as follows. Let A = diag(el,...,em)EGm, with

respect to the basis zl,...,z of V . Write SkA for the action of A on
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. k . -
skvm, i.e., SA=(s¢ )(A), where ¢1:Gn?Gm is the defining representa-
a;

\ . s k . .

tion. A monomial zl ---z“ € skV is an eigenvector for S A with eigen-
a, a 1 a

value el 9 Since the monomials zq "'zmm of degree k form a basis

for skvm, we have accounted for all the eigenvalues of SkA. Hence

" a, a_
tr SA = Tel..e®
a,+ ...ka =k
k o -1
= coefficient of ¢ in Il (l-eiq) . (4)
i=1l

Let M b be the multiset of monomials for ¢: Gn-*Gm defined above,

50 f¢(xl,...,xn) = L u. It follows from (4) that
ueM¢
LE, Mgk = I (1-up >, (5)
k>0 s°¢ ush4¢

Thus the problem of decomposing Sk¢ (up to equivalence) is equivalent

to the combinatorial problem of expanding the right-hand side of (5) in

terms of Schur functions. This is a special case of the notion of

plethysm of Schur functions; see Macdonald (1979), p.82.

For now we will be content with decomposing Sk¢l (where ¢1-G +G
is the defining representation). By (5) we have

k n
Lf, (Ndg T (1-x,q)
| k20 S0, i=1 *

-1

1

it

Z hk(x)qk,
k>0
where hk(x) is the sum of all monomials in Xyreooix of degree k (called
n

the complete (homogeneous) symmetric functiong). For any integers

bl""’b >0 satisfying Ib, ~k there is a unique tableau of shape (k) =

(k,0,0,...) with Di i's. Hence fsk¢ (x) = hk(x) =35 (x), i.e., S ¢1
1

. irreducible with character s, . Since f¢

s k
X = s, we can write s, = S8y,

1

In an exactly analogous way, given ¢ G G = GL(V ) we can compute

the character of A ¢: G +CL(AkV ) , where A denotes the k~-th exterior

power, O<k<m. Keeping the same notation as before, a wedge product

zi/\--~/\zi , 1§;l<---<i
1 k

ei ---ei . Hence
1 k

: . k : .
k§p, is an eigenvector for A A with eigenvalue
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o k
L f K (x)g- = I (l+ug). (6)
k=0 AT¢ ue M
¢
Letting ¢ = ¢l we obtain
m " n
Z £, g = I (l+x,q)
k=0 AT, i=1
m
= I ek(x)qk,
k=0

where ek(x) denotes the k-th elementary symmetric function in HypeeerX .

l<...<ck<n there is a unique tableau of shape

(lk) = (1,1,...,1) (k ones) with parts ¢;,...,C, . Hence £y (x)=ek(x)=

A .
s k(x), i.e. Ak¢l is irreducible with character s " and we gan write
1 1

For any integers 1<c

Let us compute one additional example of this nature, which will be
of use in Section 4. Let Mn denote the n2—dimensional vector space of

all nXn matrices. Then AeGn acts on Mn by the rule B+A—1BA, where

BEMn. This representation of Gn is called the adjoint representation,
denoted ad. We now compute its character. Let Eij be the elementary

matrix with a one in position (i,j) and zeros elsewhere. Choose

A=diag(e,,...,6 ). Then A 'E,.A = 6, °0.E,.. Thus
n 1] i 3 137
-1
tr(ad A) = I ei e,
i3
~ -1 -1 :
= (8;...8)) izj(gl...en)ei o, 7
r

Considervthe partition (2,1,...,1)i~n. To form a tableau of this shape
with largest part <n, choose any (n-1)-element subset S of {1,...,n}
and insert it (uniquely) into the first column. The additional entry can
be any element of {1,...,n}, with the sole exception that it cannot equal

n when § = {1,...,n-1}. It follows that

_ -1
szln_z(xl,...,xn) = iZj(xl...xn)xi xj - (xl...xn).
!

Comparison with (7) yields
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- -1 =
fad = (det) 521n_2 + sy (@ = null set).

Since s¢ is the character of the trivial representation, this means
that Mn has a (unique) one-dimensional subspace W fixed pointwise by

Gn. Of course W is just the set of scalar matrices. The complementary
invariant subspace MZ to W (the one which affords the character

(gety "'s nep) consists of the matrices of trace 0. If we restrict the
action oi’lGn on Mn to SL(n,C), then we obtain the adjpint representation
of SL(n,C), with character

-1
£ =5 (X peees,Xx ) = I (Xoeeex )%, x. + (n-1)(x,e0ex ).
ad 21n 271 n i 1 n' i ) 1 n

Since characters of SL(n,C) are defined modulo the relation Kyeonx = 1,
we could also write

f4° .E. lexj + n-1. (8)
i#3
Though this is not in the "canonical form" given by Theorem 1.3, it is
an equally valid expression for fad (and one which is more natural from
the Lie-algebraic viewpoint).
As an exercise, the reader may wish to compute the characters of

t t. -1
the actlons of G on M given by BA, A lB BA , AB, ABA, A BA

, and
t. t, -1
A BA ; where t denotes transpose and A = (A") .

Virtually any identity involving symmetric functions canbe inter~
preted in terms of representation theory. We give one such example here.
An elegant combinatorial proof (Knuth 1970, Stanley 1971) caa be

given of the identity

n -1 B -1
I (1-x.) i (1-x.%.) = b sx(xl,...,x ) . (9
i=1 t i,3=1 iJ by n
i<j L (\)<n
Now s_{(x) = Ix, and s_.(x) = Azs (x) = % x.,x.. Thus the left-hand
1 i 11 1

i<y
side is the character of the representation s(pl+pll), i.e., the natural
action of Gn = GL(Vn) on the symmetric algebra S(Vn DA Vn)' Thus by (9)
we see that in the representation S(pl+pll)’ every irreducible polynomial

representation of Gn occurs exactly once. A refinement of (9)
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(Macdonald 1979, p.46, Ex.7) asserts that

1 1 c(X)

n(l—txi)' i (l—xix.)_ = It
i i< J A

where c()) is the number of colums of odd length in A. From this it is

easy to obtain the decomposition of each Sk(pl+p ), ViZ.,pA zppears in

11
Sk(pl+ p,) (with multiplicity onme) if and only if k = 3 (A |+e) ).
3. UNIMODALITY
Consider the group SL(2,C). By Theorem 1.3 the irreducible
characters are just the Schur functions

s_(x,y) = B T

s . , . m s
(Thus the irreducible representations are just S (ol).) It is more usual

to write this character as

-1 ~m -m+2 m
sm(x,x ) =x +x terrdx,

which of course is the same as before modulo the relation xy = 1. Now
suppose p 1s any representation and that Dm appears in p with multi-

plicity a . Then for sufficiently large k, p has the character

-, -m+2
X

-1 k m
£ (x,x ) = I a (x + +eeodx )
P =0 B

where bj = a ++++ for 0, and bj = b—j' It follows that

+
54254213540
D 2O 2 Zeae Sb Zee. .o i
Do‘bz’bq’ and bl b3 We say that a sequence co,cl, ,cr s
unimodal if cSc <+«<c and cZc >+ --2x for some s, and is symmetric
— 01 s s s+l r e

if ¢, = ¢ ,. Thus we have shown:
i r-i

3.1 Theorem. For any representation p of SL(2,£) with character

k
-1 3
fp(x,x y = .=§k bjxJ the two sequences b_ ,b_| ,,.../b, and
b—k+l'pk+3""'bk-l are symmetric and unimodal.

Theorem 3.1 can be used as a tool in showing that certain sequences
of combinatorial interest are unimodal. For a general discussion of this
topic, see Almkvist (1982). Here we present the prototypical case, viz.,

the action of SL(V2) on Sk(smVZ) or equivalently, the representation
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Sk
pm. -1 -m = -mn+2 m k
Since sm(x,x ) = x  +x +++++x , the character of P =S Pn is
given by
r r r
-1 -m,: 0, —m+2 1 m. m
fp(x,x y =L (x ) “(x ) eee (X))
r_ +2Y _+eseotmx
~mk 2
= x ™ (x“) n

where the sums range over all nonnegative integral sequences

x cee i ] ceos = ) i
(ro, 17 yx,) satisfying rgtr gt ety k., Identify (ro,rl,...,rm)

with the partition A with x, parts equal to i. Then the sum ranges over

all partitions A whose Ferrers diagram (e.g., Andrews 1976, p.6) Zfits in
a kxm %ectangle, and rl+2r2+...+mrm = ‘X\. Hence the coefficient of

x_mk+23 in fp(x,x—l) is equal to the number p(3j,m,k) of partitions of 3j
fitting in a k*m rectangle (i.e., with Sk parts and largest part <m).

It follows from Tneorem 3.1 that for fixed m and k, the sequence
p(0,m,k), p(1,m,k),ee., DP(mk,m,k)

is symmetric and unimodal. Although it is possible to prove this result

without mentioning SL(2,€) (e.g., Stanley 1982, Cor. 9.6), no simple

combinatorial proof is known.

Let us also mention that the polynomial Zp(j,m,k)qj is the

g-binomial coefficient [m;k], defined by J
mtk. _ fmtk}!
k [m] ! [k]! !
where [i]! = (1-q) (1—q2)---(l—ql). (See Andrews 1976, Thm. 3.1) Thus

we have shown that the coefficients of [m;k] are symmetric and uninodal.

4, A LITTLE INVARIANT THEORY

1f a group G acts on a ring R, then the fixed ring
R® = {£€R | Af = f for all ASG }

is called the ring of invariants of G. Suppose we're given a decomposi~

tion R = Ro [} Rl ® «-+, where each Ri is a finite-dimensional vector

space over a field K and ® denotes vector space direct sum. Suppose G
G

G G G
acts so tnat GR, = R,. Then R = R_ © RG ® +.+, where R, = RN R,
i i 0 1 i i

We
then call the power series

r8,q = I (dim R)q
0 i




Stanley: GL(n,C ) for combinatorialists

the Molien series of RQ (or of G acting on R).

Consider the special case G = SL(n,@) and R = S(V) = C @ Sl(v)
@ SZ(V) ® -++, where V affords the adjoint representation of SL(n,Q)
(i.e., V is the space of nxn complex matrices of trace 0, and G acts on
V by conjugation). It is easy to see that RG is generated by n-1
algebraically independent elements 91,..,9n_l of degree§ 2,3,400,0,
Namely, for BeV take Oi(B) to be the coefficient of An_l-l in the cnar-

acteristic polynomial of B. It follows that
G 2
F(s(M) @) = 1/(1~q") -+~ (1= ). (10)

We will give a combinatorial derivation of (10).

Since we are working with SL(n,@ , we deal with the variables
X = (xl,..,xn) and all our computations are performed modulo the rela-
tion Xpmeex, = 1. Let A = (Al,...,Xn_l) be a partition, and deiine

A = (Al,kl—kn_l,kl—kn_z,...,Al—Az). We claim
sA(l/xl,...,l/xn) = s;(xl,...,xn) (1)

(always modulo xl---xn=l). While it is easy to give a representation-

theoretic proof of (1l), a combinatorial approach is instructive. Namely,

m

given a tableau T of shape A and largest part <n, define a new tableau T

of shape A by the following condition: if a are the elements of

l,...,ak

the i-th column of T, then the elements bl""bn—k of column Xl—i+1 of
T consist of the elements of the complementary set {l,...,n}-{al,...,ak}.

For instance, if n=4, then we have

44333211 44444432
3221 333221 .
11 2211

T T

Tnis sets up a one-~to-one correspondence between the terms of

A
s~(xl,...,xn) and &l - xn) lsA(l/xl,...,l/xn), so (11l) follows.

A Next consider the product
-1
-n+l -1
(1-q) I (1—qxixj ) = b P)\(q) s)\(x) p (12)
i#] A= Ageeeeir )
n-1

where PA(q) is a formal power series in g. It follows from (5) and (8)

196
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that FG(q) = P¢(q). In oxder to expand the left-hand side of (12), we
begin with the identity

Ty T 5 5, ()8, (v), (13)
i,3=1 A=Qpreee )

which can be given an elegant combinatorial proof (Knuth 1970, p.726;
Stanley 1971, Cor.7.2) similar to that of (9). Make the substitution
y.»>qx;l in (13). We obtain

J
-n -1, ]
(1-q) il (l—qxix. ) =3 q s}\ (x)s>\ (1/x)
i#3 J A
=gt e s ey 1), (4
3 A A

(This is similar to Macdonald (1979), ex.53, p.37.) We now appeal to the
Littlewood-Richardson rule (Macdonald 1979, I.9) for multiplying Schur
functions. It is easy to deduce from this rule (see Stanley 1977,

Thm, 3.4) that for any partitions u and Vv intoSn parts, when we expand
su(x)sv(x) in terms of sp(x) for %(p) €n-1 (working modulo %p+rex =1 as
always) , the coefficient s (x) is 6us,. In particular, the coefficient

14

of Sg(x) in sx(x)si(x) is one. Taus from (1l4) we obtain

-1 A
(1-q) P¢(q) = b ql l
>‘=()‘lr---r)\n)
2 n .
= 1/(1l-q)} (1-g") ... (1~q) ,
so (10) follows.
An analogous argument applies to the case G = GL(n,C) and
2
R=AMV) = CTeo ANV @ e ® AY'-1(v), where once again V affords

the adjoint representation. Instead of (13) we use

n
= b s (15)
_ T_I= (l+xiyj) N . )\(X)s)\, (yy
llj l l"", n
where A' denotes the conjugate partition to A (see Knuth 1970, p.726;
Stanley 1971, Cor.9.2). Thus we obtain

(1™ 1 (l+qxix__l) = qIXISA(X)SN (x) .
i#j J A X

The coefficient of s _(x) in s)\(x)s~ (x) is one if A = A' and otherwise
L}

@

A
zero. Hence in this case by (6) and (8) we have
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waramCa = & . 16
A=)
A=(Al,...,kn)
It is well-known (and easy to prove combinatorially - see Hardv & Wright
(1960) , pp.278-9) that the number of self-conjugate partitions of m with
<n parts is equal to the number of partitions of m into dlstlnct odd
parts <2n-1, Thus the right-hand side of (16) becomes (1+q)Q+g )---

(l+q2n—l), so

A G = ) (kD) - e (Lt Th an

This well-known result is usually proved by much more algebraic means
(e.g., Weyl 1946, p.233; Kostant 1958) .

The "g-Dyson conjecture" of Andrews (1975), p.216 (see also Mac-
donald (1981,1982)), in the case al=---=an=k, is equivalent to finding

the coefficient of s¢(x) in

k n o -1
I n (1-q x.%X. ).
m= . i3

perhaps the combinatorial techniques illustrated here will be of value

in resolving the conjecture.

Late note: Our proof of formula (L7) is essentially that of
D. E. Littlewood (1953), On the Poincaré polynomials of the classical
groups, J. London Math. Soc., 28, 494-500.

198
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