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THE Q-DYSON CONJECTURE, GENERALIZED EXPONENTS, AND
THE INTERNAL PRODUCT OF SCHUR FUNCTIONS

Richard P. Stanley!

ABSTRACT. The g-Dyson conjecture is a combinatorial problem posed by
G. Andrews in 1975, The conjecture can be formulated in terms of
symmetric functions, and it is shown how the theory of symmetric
functions can be used to prove a limiting form of the conjecture.

The proof uses a new identity involving the internal product of Schur
functions. The same techniques yield information about a limiting
form of the "generalized exponents" of SL(n,C), as defined by
Kostant, Complete details will appear in a forthcoming paper in
Linear and Multilinear Algebra.

1. THE Q-DYSON CONJECTURE. Let ayseeey A be nonnegative integers. In 1962
Dyson [2] conjectured that when the product
n
T (e, 1%
i,351 (7%
itd
is expanded as a Laurent polynomial in the variables Xyseots Xps then the

constant term is equal to the multinomial coefficient (a] tooet an)!/a]!---anL
This conjecture was proved in 1962 by Gunson [4] and Wilson [15], and in 1970 an
exceptionally elegant proof was given by Good [3].

In 1975 G. Andrews [1, p. 216] formulated a "q-analogue" of the Dyson
conjecture, which reduces to the original conjecture when q = 1. Write
(a)y = (1-a)(1-a0)=-(1-aq"™"), 0 (a), = (1-a)(1-0%)+--(1-q").

Q-DYSON CONJECTURE. When the product

T (qxix71) (x.x;])
1<i<js<n J a; - J aj

is expanded as a Laurent polynomial in the variables Xpstts X then the

n’
constant term is equal to the g-multinomial coefficient
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This conjecture was proved for n < 3 by Andrews [1] and for n = 4 by
Kadell [6]. It was also proved for ay =--e=a = 1, 2, or « by Macdonald
[12], who formulated a far-reaching generalization. Further work appears in
[5]. Here we will establish, as a corollary to a more general result, the case
A T, == 2 in the limit n — «. In the form stated above, the g-Dyson
conjecture becomes meaningless when n — ., However, it can be restated to
make sense in this limit. We will give a restatement in terms of representation
theory due to Macdonald [12, Conj. 3.1']. Let SL(n,C) denote the group of
n x n complex matrices of determinant one, and s&(n,C) its Lie algebra of all
n x n complex matrices of trace zero. Let

ad: SL(n,C) — GL(s%(n,L))
denote the adjoint representation of SL(n,L), defined by

(ad X)(A) = XAX'],
for X € SL(n,L) and A € si&(n,C).

Q-DYSON CONJECTURE FOR a; =r--=a = 2 (reformulated). The multiplicity

of the trivial character of SL(n,C) in the virtual character

det(1-q-ad X)(l-qz-ad X)--~(]-q2']-ad X)
is equal to
n-1 2-1 ..
H (hqmﬂ] - (1)
i=1  j=1

2. SYMMETRIC FUNCTIONS. The above conjecture can be formulated in terms of
symmetric functions, which we will now briefly review. Let X = (A],Az,-.-)

be a partition, i.e., a decreasing sequence A] > Az >...> 0 of nonnegative
integers with only finitely many Ai unequal to zero. If An+1 = ln+2 == 0
then we also write X\ = (A],--~, An). The number of nonzero Ai is the length

of A. denoted #(\). If m= A] + A, +--- then we write X F m or

|A] =m. The conjugate partition A' = (A;, Aé,...) to A has Ay - Ay,
parts equal to i.

Let A, = An(x) denote the ring of all symmetric polynomials with
rational coefficients in the variables x = (x],---, xn), and let Q, denote
A modulo the ideal generated by XyXpt X = 1 . A vector space basis for

n n

Q, consists of all Schur functions sx(x) = sx(x],‘~-, xn), where A ranges

over all partitions of length < n - 1. For the definition and basic properties
of Schur functions, see [11].
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If : SL(n,L) — GL(N,L) is a (polynomial) representation of SL(n,C),
then the character of ¢ 1is the unique polynomial char ¢ € Qn satisfying
char @ = tr @(X) for any X € SL(n,C) with eigenvalues X157t Xge A basic
theorem (e.g. [14]) on the representations of SL(n,L) states that the
irreducible (polynomial) characters of SL(n,L) are precisely the Schur
functions sk(x) € Qn’ 2(X) < n-1. Thus the problem of decomposing char ¢
into irreducible characters is equivalent to expanding char ¢ as a linear
combination of Schur functions in the ring Q-

Sometimes it is convenient to work with symmetric functions (= formal
power series) in infinitely many variables x = (x],xz,---). We let A = A(x)
denote the ring of all symmetric formal power series of bounded degree with
rational coefficients in the variables x. A 1is the inverse limit of the
rings A in the category of graded rings. The Schur functions sA(x), for
all partitions A, form a vector space basis for A(x). The completion A of
A (with respect to the ideal of symmetric functions with zero constant term)
consists of all symmetric formal power series with no restriction on the degree.
A is the inverse limit of the rings An in the category of rings. For further
information, see [11, Ch. I.2]. Let us remark that in [11] the elements of
An’ A, and A have integer coefficients, but we will find it convenient to
allow rational coefficients from the start.

Now suppose X € SL(n,L) has eigenvalues Xpattts X

n
det(1-qx) = TT (1-qxi) .

i=1

1

Since ad X has eigenvalues xixf (once each for i # j) and 1 (n-1 times)

(e.g., [14, eqn. (8)]), we have

det(1-g-ad X)---(1-¢*-ad X)

(2)
-1 n 2-1 K -1
= (@), 4 iTI;l II] (1-q X;% ) .

Q-DYSON CONJECTURE FOR ap =rcr=a =4 - 1 (again reformulated). When
equation (2) is expanded in the ring 2, 8 Q[[q]] as a linear combination of
Schur functions SA(X) with 2(X) < n - 1, then the coefficient of the trivial
Schur function s¢(x) is given by (1).

The above conjecture makes sense as n — . We might as well consider a
much more general situation, and later specialize to the case at hand . Thus
introduce two new sets u = (u],u2,~--) and v = (v],v2,~~°) of variables,

and write (in the ring 2 8 Q[[u,v1])
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k =
det TT T, 30°% ~ ; ¢} (usv)s, (x), (3)

where X ranges over all partitions with 2(X) <n - 1, Clearly
cg(u;v) € Z[[u,v]], the ring of formal power series with integer coefficients
i the variables u = (u], ”2"") and v = (v], V2"")'

We wish to consider c?(u;v) as n — oo, To do so, one must vary A
with n or else the 1imit becomes zero or undefined. The correct way of
passing to the limit was suggested by R. Gupta (in the somewhat less general
context of Section 5). Given any two partitions o and B of lengths k and
% of the same integer m, and given n = k + 2, define the partition

[aa B]n = (B'l"'a]a B'l+a2a"’,3'|+ak’ B];"’;B]a B]-B,Q,’ B]-Bl_],"',B]-BZ)
—

n-%k-2
of length <n -1
-
__“_r—'
[a’B]n = nJ '
8 ]
!
| [
. L - - _—_ _
It follows from Gupta's work that
1im ¢" (usv)

nv=  [a,8],

exists as a formal power series, which we denote by caB(u;v). Our main goal
here is a formula for caB(u;v). The q-Dyson conjecture in the case n —

corresponds to taking o = 8 = ¢ (the void or trivial partition) and v; =0,

=

u]:q, u2=q,..., uQ/_,|=q ’uﬂ,=u2+] ="’=0.

In order to state our result, we first review some more background from the
theory of symmetric functions. The irreducible characters XA of the symmetric
group Sm are indexed by partitions A of m. If wE€E Sm’ then define p(w)

to be the partition of m whose parts are the cycle lengths of w. For any
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A m with & = 2()), define the power-sum symmetric function

n .
P, =Py Py -+ Py » where p (x) =) x.. The Schur functions and power-sums
A A] A Az n ;i

are related by (e.qg., [11, Ch. 1.7])

S>‘ = l‘.:]‘| z X)\(W)p
: WeSm

p(w) * (4)

Now let

% = T gggy X
Y
where each gaBY is a nonnegative integer. It is an important open problem to
obtain a nice combinatorial interpretation of g . . D.E. Littlewood [10], in
order to incorporate the Kronecker product XQXB into the theory of symmetric
functions, defined an associative (and commutative) product fxg on symmetric
functions by

called the internal product. (Littlewood uses the term "inner product”.

Since the product fxg has nothing to do with the usual definition of inner
product in linear algebra, we have followed a suggestion of I.G., Macdonald in
calling it the internal product. Littlewood uses the notation fog for
internal product. Since we are adhering to the notation of [11], where fog
denotes plethysm , we have introduced the new notation fxg.) Note that

Sa*Sm ™ Sg and S*S m = Sy where o' denotes the conjugate partition to a.

a”°m m
In terms of the power-sums we have the expansion

Sg*Sg = %T T x*w)Bw)p (5)

W€Sm p(w)*

The following basic property of the internal product is due to Schur [13] (p.69
of Dissertation; p.65 of GA):

2.1. PROPOSITION. We have

T Ooxyyv)™ = 1 soasg (s (x)sgly). (6)

i’\]’ a’B

Now define a scalar product <f,g> in the ring A by letting the Schur
functions form an orthonormal basis, i.e.,

<SA’ Su> = Gku .

Given partitions a,8, define a symmetric function So/8 e, called a skew
Schur function, by the rule
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<S ,.5 S > =<8 ,8S5.8S >,
a/B> "y a’> "By

In other words, multiplication by Sg is adjoint to the linear transformation

sending sy to So/B° It is not difficult to show that Sa/s =0 wunless

B <a, i.e., B; sa; forall i. For further information, see [11, Ch.I.5].
Let us remark that the Schur function s[a 8] (x) was considered by D.E.

Littlewood [8], who essentially showed that in the ring Qn we have
=5 (<) /A
s[a,e]n(X) § (1)1 sy n (Ksg iy (1/x)

where x = (x],---, xn) and 1/x = (1/x],--~, l/xn). For instance, the adjoint
representation of SL(n,C) corresponds to the partition [1,1]n, with
character

s[],]]n(X) = 51(x)s;(1/x) -1

-1 -1
(x.l +ooot xn)(x.l Feok xo ) -1

n-1+ 7% X, X7

ity 'Y

3. A FORMULA FOR caB(u;v). In order to evaluate caB(u;v) we first obtain a
formula for the generating function

C(x,y) = 28 CoglUsv)sy (X)sgly) € Qllu,v]] 8 R(x) 8 A(y) .
Qa,

It will be more convenient to work with

Colxsy) = aZB Cugl03V)s,(x)sgly)

and later to apply a standard trick to obtain C(x,y) from Co(x,y). (Here
caB(O;v) denotes the substitution uy = 0 in caB(u;v).)

3.1. LEMMA. We have

Colxsy) = 1 syxs (V)sy ) (X)s, /o (¥)

o
Asu,0 W/

Sketch of proof. One begins by setting y. = xf] in (6) so that the

left-hand side of (6) coincides with the left-hand side of (3) when Uy = 0.
The proof then proceeds by standard manipulations of symmetric functions, which
we omit., [
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Next we find a more tractable expression for Co(x,y) by establishing the
following symmetric function identity, which apparently is new.

3.2. LEMMA. We have

mT I - XYi¥a, " Va )™

i,j r>0 a],-~.,ar r
- {J;I'] (- Pk(v))] A,E,a 58, (V)sy o (x)s /o (). (7)

(Here aj,+++, a, range independently over all indices of the v's.)

Sketch of proof. We work in the ring R = Q((v)) 8 A(x) 8 A(y), which
should be regarded as consisting of formal power series of bounded degree,

symmetric in the x's and y's separately, with coefficients in the field
Q((v)) (the quotient field of Q[[v]]). Define a scalar product on R by
letting the elements sa(x)sB(y) form an orthonormal basis.

If f € R then let D(f) denote the linear transformation which is adjoint
to multiplication by f, i.e.,

<D(f)g! h> = <g, fh>
Note that D(f+g) = D(f) + D(g). Let P(v) = T[(1 - pk(v)). The right-hand
of (7) is given by k21

P(v) g D(s4(x)s,(¥)) Agu sy#s,(V)sy (x)s (y)

- -1 -1
= P(v) D(i'l"Tj (1 - xiyj) ) 115( (- xiijk) .

Thus writing LHS for the left-hand side of (7), we need to show that for all
f € R,

- -1 -1
<LHS, f> = <P(v) n(]-xiijk) , f n(l-xiyj) >.

It suffices to check this for all f forming a Q((v))-basis for R. Choose
f = pa(x)ps(y), and the verification becomes a routine computation using
standard symmetric function techniques. O

If we now compare Lemmas 3.1 and 3.2 and expand the right-hand side of (7)
in terms of the pA(v)'s, we obtain:

3.3. LEMMA. We have
Pe(v) ]

CaB(O;V) = P(v)'l sa*sB[pk — T:BETVT (8)
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The notation indicates that we are to expand So*Sg in terms of the pk's, as
given explicitly by (5), and substitute pk(v)/(l - pk(v)) for p,. O

In order to find a similar formula for cae(u;v), we first replace the
variables v 1in (8) by the two sets of variables u and v. Now let W,
denote the algebra automorphism described in [11, pp. 14-17, 26] acting on
symmetric functions in u (regard all other variables as scalars commuting
with wu). By standard properties of W,

wu[_if(1+uk)'](1-vk)']]det]a'(1+uk ad X)'](l-vk ad X)']

Hence from (3) we get

w, caB(O;-u,v) = caB(u;v) .

On the other hand, from [11, (2.13)] there follows
w, Pel-usv) = p (v) - p(u).

We deduce from Lemma 3.3 our main result:

3.4. THEOREM. We have

» -p (u)+p, (V)
Cyglusv) = [TE'(1+Pk(“)'pk(V)) ]Sa*sa[pk - T?B;TUT:FETV)) ’

The above theorem is essentially implicit in the work of P. Hanlon. He
computed maximal weight vectors for certain virtual representations of SL(n,C),
and it was apparent that his result implied an identity involving symmetric
functions. The actual identity turned out to be a special case of Theorem 3.4,
but there is no difficulty in obtaining all of Theorem 3.4 from Hanlon's
technique. Earlier I had proved some special cases of Theorem 3.4, and the
proof sketched here uses similar techniques.

4. APPLICATION TO THE Q-DYSON CONJECTURE. Recall that the q-Dyson conjecture
corresponds to the substitution
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qi, 1<i<sa-1

u; =

0, i=1
v © 0,
a=B8=¢ .

Let us first state the result for arbitrary o,R .

4.1. COROLLARY. Let o,BFm. The coefficient of the character S[a 8] in
the expansion of the virtual character n
2 2-1
det(1-q - ad X)(1-q° . ad X) --- (1-q . ad X) (9)

of SL(n,C) approaches, as n — « , the value

2-1 -
[T 0-897] cgglad®srns @l 0

2-1 s k (2-1)k
_ Li+j -q (1-9q )
=TT TT (1-q )]S*S[p--» .0
[12] j=1 a Bk ]_qlk
If we Tet o =8 = ¢ (the void partition)above, then s,*s, =s =1, so

o)
we obtain:

4.2. COROLLARY (g-Dyson conjecture for a; =2-1 and n-= ). The
coefficient of the trivial character s, in (9) approaches, as n ——s o« , the

0
value

2-1 ..
T TT 0-4™) . ¢
ix1 j=1

What can be said about the form of the generating function
cas(q,qz,o--, ql'];O) appearing in Corollary 4.1? We will state a few results
along these lines. Empirical evidence suggests that much stronger statements
are possible, and that a fairly simple explicit formula may exist in many cases,
if not in general.

For any partition A, define the hook-length of A at x = (i,j) € A to
be

h(x)=h(i,j)=x1.+>\3‘.-i-j+1.

Here we identify A = (A],Az,--- ) with its Young diagram

{(i,j): 1 <14 < Ay = L(A), 1< < Ai} . Following [11, p. 28], let
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Hy(a) = TT (1-g"X)y
XeA

the "hook polynomial"™ of A .

The following lemma appears to be new. Its proof is based upon the
combinatorial description due to Littlewood and Richardson [9, p.70] [11, Ex.5,
p. 64] (equivalent to the "Murnagham-Nakayama formula") for computing the
irreducible characters of the symmetr1c group S If we Sm has cycle type

= p(w), then we write ¥ (p) for x (w)

4.3. LEMMA. Let X,p  m. Let xA denote the irreducible character of Sm

corresponding to . If xx(o) # 0, then HA(q) is divisible by
2(p)

TT (- q h. oo

4.4, PROPOSITION. Define a formal power series DaB(Q) (which depends on %)
by
k

1-q_ ]
k21 1-q<% Pog(4) -

2-1

——

2
C(J,B(q’q »" s Q

Then for some polynomial LaB(q) € Z[q] (which depends on %), we have
24-1

Proof. By Corollary 4.1 and (5), we have

Ky (2-1)ky )" (W)
Da(@ = a1 I x*w) i [ﬁ—(:—‘:g—k——l] :
We 2 -

m

where mk(w) parts of p(w) are equal to k. By Lemma 4.3, every term of the
above sum for which x*(w) # 0 is a rational function whose denominator
divides H (q ) . Hence the ent1re sum is a rational function whose denomi-
nator can be taken to be H (q ), and it is easily seen that the numerator has
integer coefficients. (8]

4.5. PROPOSITION. Let B consist of the single part m. Then
_ ig (3-1)a+1
Lm(@) =TT (@' - g
M (1hd)ea )

Equivalently, Lam(q) is obtained by multiplying together for all i the

product of the first oy terms from the i-th row of the array
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3 L+ 3 29+1
ql -q qQ -q ! qQ -q
3 L 2+ 2% 29+
q2 -q q2 -q ! qQ -q L
2+ 2 241 ...
q3£ -q q32 -q 1 q3 - q2 1

The proof is essentially a consequence of Littlewood's work on "S-functions
of special series", in particular, Theorem II on page 125 of [9].

5. GENERALIZED EXPONENTS. There is an additional specialization of cas(u;v)
of independent interest. Let gy= s¢(n,C). The adjoint act1on of SL(n,L)
extends to an action on the symmetric algebra S(g}) JJD S (gb), where sk

denotes the k-th symmetric power. It is well-known that the ring

variables

of invariants of this action is a polynomial ring in n - 1
2, cey en’ where 6 is homogeneous of degree i. Namely, for
A€ s 6 (A) is the coeff1c1ent of t" in the characteristic polynomial
det(A- tI) of A.

By a theorem of Kostant [7, Thm. 0.2], we can write
S(?)=J8H,

where H = jJ_Hk is a graded subspace of S(g}) invariant under SL(n,L). Let
HA denote the isotypic component of H corresponding to A, i.e., the sum of
all subspaces of H which afford the character sA(x). We may then decompose

HA into irreducible subspaces H; .

-

i
. d.
where each H; can be chosen to be homogeneous, i.e., to lie in S 1(971) for

some di' The numbers di are called the generalized exponents of X. Define

—S1
o0

the generating function for the generalized exponents of A. Kostant also
shows in [7, Thm. 0.11] (when applied to SL(n,f)) that GA(]) is equal to the
dimension of the zero-weight space of the representation ) and is therefore
finite. Thus GA(q) is a polynomial in q.

In terms of generating functions it is easy to see from the above discussion
that
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det(1-q - ad X)-] = 1 ¥ Gx(q)sx(x],..., x )

(1-q%) -+ (1-q") X n

(modulo Xpere Xy - 1). (10)

Ranee Gupta conceived the idea of studying G[a 8] (9) as n -, and
showed that n

- 1i
GaB(q): = nl:LG[a,B]n(q)

exists as a formal pow$r series. She conjectured that GaB(Q) is a rational
function PaB(q)Ha(q)° , where PaB(q) is a polynomial with nonnegative
integer coefficients satisfying PaB(]) = XBU). Later shg and I conjectured on
the basis of numerical evidence that Gas(q) = sa*se(q,q seee ). We will
indicate how all these conjectures follow immediately from our previous
discussion, except for the nonnegativity of the coefficients of PaB(q), which
remains open.

Comparing (3) with (10), we see that

- k .
G,g(a) = [klzl] (1-q )] €y3(0:a) -
From Theorem 3.4 we deduce:

5.1. PROPOSITION. We have
G .(q) =s #s.(q q2 o)
aB o B H) ’ .

Additional properties of GaB(q) follow from Proposition 5.1 in the same
way Proposition 4.4 follows from Corollary 4.1. We merely state the results
here.

5.2. PROPOSITION. (i) There is a polynomial Pas(q) € Z[q] for which

(@) = Pl (@)

(i) Pae(]) = xB(1L the number of standard Young tableaux of shape B8 .
(111) Pyugi(q) = Pypla) -

. h _ _ _ -
(iv) qm+ (a)pae(]/q) = PaB.(q), where |a| = |8] =m and h(a) = xguh(x).

h(a)

(v) deg PaB(q) < h(a), and the coefficient of gq is the Kronecker
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delta SaB"

(vi) Pas(q) is divisible by q", and the coefficient of q" is 84g

(vi1) Pg, () = Pygladg(aly (@)™ .

(viii) Let B consist of the single part m, and write Py,(q) for

Pa(@). Then P (@) = ™), where n(a) = 5(i-1)a; = g[‘z"") ,

Finally we state explicitly the conjecture mentioned above.

5.3. CONJECTURE (Gupta-Stanley). The coefficients of PaB(Q) are nonnegative.
Alain Lascoux has proved the above conjecture when B is a "hook", i.e.,

a partition of the form (m-k, 1k) for some 0 <k <m- 1. He has shown that

in this case PaB(Q) is the coefficient of tk in the product

q TT (q" +td) .
(i,d)ea

(i,3)#(1,1)
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