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This paper surveys some results appearing in a section of the author's
doctoral dissertation [4, Ch.IV, Section 5]. For further details, generalizations,

and applications, see [4].

Let P De a finite (partizlly) ordered set with p>0 elements and
longest chain'of length [/ (or cardinality £+ 1), A chain (totally ordered set)

with p elements is denoted C

Definition (i) A map 0o: P—> Cn is said to be order-preserviag if
X<V =g(X)<o(Y). Define {(n) fo be the number of order-preserving

maps ¢ P—> C .
n

l(ii) A map T:P—> Cn is said to be strictly order-preserving if
X <Y = #(X) <7(Y¥). Define {2(n) to be the number of strict order-

preserving maps T P—> Cn .

{iii} e denotes the number of surjective order-preserving maps
;1 D et Y

c: P— C .
n

(iv) -én denotes the number of surjective strict order-preserving

maps T: P—> C

n

For instance, if P = CP , then Q(n) :(I?-f*lia-l) and ?Nn) = (;) 3

while if P 1is a disjoint union of p points, then @(n) = 5(1&) =n" ., For
any P , the number ep = EP is equal to the number of wa.'ys of extending
P to a total order and is an important numerical invariant of P . It

is not hard to sce that {n) is equal to the number of serni-ideals in the



direct product P X Cn (see [1] for definitions). In particular, Q=1

-1
and §(2) is the number of semi-ideals of P .

Theorem 1. (n) and Ez,(n) are polynomials in n of degree p

and leading coefficient ep/pf given by

=5, <, (3)
e - 2 <, (2) ~

n

s) subsets S5 of Cn of size s , there

Proof . ¥For each of the (
are e (resp. 'é's) order-preserving {resp. strict order-preserving) maps

of P onto 8, and the theorem follows . [J

In the language of the calculus of finite differences,

Q{0

o]
It
g

2% Q(0)

(4
1

The polynomial (n) 1is an ordered set analog of the chromatic polynomial
of a graph. Q (n) counts the number of ways of''coloring' P with the

colors 1,2,...,n such that no two comparable elements of P have the same
color, and such that this coloring is ""compatible' with the ordering of P

One point at which the analogy breaks down is that the coefficients of _Q“(n)

need not alternate in sign, the smallest such P having five elements,

We now come to the crucial lemma (whose proof will not be given here)
in analyzing the polynomials Q(h) and h—(n) . Let ¢ be any surjective order-
preserving map P—> {1,2,...,p}, i.e., @ is an extensionof P toa

total order. We denote the elements of P by Xiseens Xp , where
"’(Xi) =1, Listall permutations il,iz,...,ip of 1,2,...,p with the



property that if X<Y in P , then w(X) appears before (Y} in

i.l,iz,'. ..,i . There are ¢ such permutations. Puta "<" bhetween two
P p

consecutive terms i, and ijﬂ if ij "<"ij~!;1 ;

Denote the array thus obtained by £ . Denote by F the array obtained

otherwise put a '"<" sign:

from f by changing all "<" signs to "<'" signs and "<'" signs to
l<’ glgns, We say a map ¢: P~—> Cn is compatible with a permutation
e ,ip appearing in & (or I)if O(Xil) < U(Xiz) <...= o'(Xi ) and

0 (X)) <(X; ) whenever a '<' sign appearsin FoFEE) between i
D AT

J i+l . Sl i ]
and ij—!—l : -
3 4 :
Example: Let P and .w be given by INZ . Then £ and
£ are given by
12534 1<2 <3 <4
2 <l 3<4 2 <l <3 <4’
1l <2<4<3 1 <2 <4<73
2<l<4<3 . 2<1 <4 <3
254<1 <3 | 2<4<1<3

£ L

Lemma (i} Every order-preserving map og: P— Cn is compatible

with exactly one permutationin g,

(ii) Every strict order-preserving map 7: P —> Cn is compatible

with exactly one permutationin § . O

Thus we obtain alternative expressions for (n) and G (n) by

summing the contributions coming from each permutationin g and ¢

If exactly s ''<'" signs appear in a given permutation, then this permutation

1s easily seen to contribute a term (n+p1;1'- S) to Q(n) or Ti(n) . Thus
by the lemma, we obtain



Theorem 2: Let W (resp. W -} be the number of permutations in
— g

¢ (resp. &) with exactly s "< . signs. Then
p-1
+n-1-

Q(n):E WS(P n S)

s=0 oo b

p-1
= _ —_ p+n-1-s
& (n) Hs:O Ve ( P ) O

But clearly W= Substituting into Theorem 2 and comparing

w L.
‘ p-l-s
the resulting expression for ) {n} with the expression for () , we obtain

the following fundamental result.

Theor‘em 3 ﬁ (n) = (-—1}p Of-n)

The numbers W are natural generalizations of the Eulerian numbers
[3,pp214-215] . When P is a disjointunion of p points, then w_ is
s
equal to the number of permutations of 1,2,...,p with exactly s decreases.

between consecutive terms. Thie is the combinatorial definition of the

Eulerian numbers AP sl We also have the generating functions
o0 n P71 541 pl
T Oin)=x :(E WX )/ (1-x)
5
n=0 s=0
0o 1

p—
Q@) x = ( 5

— s+l pt+l
(1-x)
n=0 5=0 WS 8 >/ N

Theorem 3 allows the determina*:lon of all integer zeros of Q(n}. We

state a slightly stronger result,



Corollary 1 We have Q(0) = Q(-1)=... =Q(-4) =0 , while for n>0,

(-1)F Q(-£-n) > Qin} >0

One can ask when equality holds in the inequality at the end of Corollary 1.

A complete answer is provided by the following two theorems. They are proved
by constructing in an obvicus way a sirict order-preserving map 7:P—> Cn g
+

corresponding to a given order-preserving map o: P—> C , and
: n

analyzing when this correspondence is bijective.

Theorem 4, Q(-2-1) = (—1)p if and only if every element of P is

contained in a chain of length £ . J

Theorem 5 . The following three conditions are equivalent.
(1) & (-2 -n) = (u_l)P Q(n) for some integer n>1
(ii) o -£-n) = (-1P g(n) for all n
(iii) Every maximal chain of P has length £ .

It is not difficult to find ordered sets satisfying the conditions of
Thecorem 4 but not of Thecrem 5. There are ﬁﬂgg‘such non-isomorphic
ordered sets with six elements and none smaller. Theorem 5 leads to some
interesting identities which appear to be difficult to prove by purely combinatorial

reasoning.

Corollary 2. If every maximal chain of P has length £ , then

(1) 2e

p-1 = (p+L-1) ep

(i) z‘é‘P L= (p=-1) <

{iii} The coefficient of nphl in Q(n)is fe /2{p-1}}.
P ;P o P
fiv) ©» e =2 % e

s=1 s g=1 s



Proof By Theorem 5, we have

—EP ny o P P -f-n
Qln) —5:1 es(s) = (1) il es( s )

-1 . ' .. '
Equating coefficients of nP gives (i) while (ii) is proved similarly
ué:’mg G{n) . (iii) is then an immediate consequence of (i} . We omit the

pr'oof of (iv} which involves a somewhat more complicated manipulation. 0O

As a consequence of formula (i) or (ii) of the previous corollary, we
get a curious though not very significant result. I have been unable to find a

direct combinatorial proof of this fact,

Corollary 3 If every maximal chain ¢f P Thas length £ , then either

p-f is odd or e is even.

The preceding corollary motivates the following conjecture: Let P be
any finite ordered set. If the length of every maximal chain of P has the

same parily as p , then e is even.

In conclusion we mention that various methods are available for explicitly
determining {n}) for special classes of ordered sets P . For instance,
one of the more interesting such classes consists of those P which are the

direct product of two chains, say P = Cr X CS . It can then be shown that
r+ 11—1) (r+n r+s+n-2)
QD1 ) IEEE G
by r+1> +s5-1
(r> ( r (r r )

This formuila is closely related to MacMahon's solution of the "generalized

Q(n) =

ballot problem!. [2, Section 103].
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