A CHROMATIC-LIKE POLYNOMIAL FOR ORDERED SETS

Richard P. Stanley Harvard University

This paper surveys some results appearing in a section of the author's doctoral dissertation [4, Ch. IV, Section 5]. For further details, generalizations, and applications, see [4].

Let P be a finite (partially) ordered set with p>0 elements and longest chain of length ℓ (or cardinality $\ell+1$). A chain (totally ordered set) with p elements is denoted C_p .

- (ii) A map $\tau: P \longrightarrow C_n$ is said to be strictly order-preserving if $X < Y \Longrightarrow \tau(X) < \tau(Y)$. Define $\overline{\Omega}(n)$ to be the number of strict order-preserving maps $\tau: P \longrightarrow C_n$.
- (iii) e denotes the number of surjective order-preserving maps $\sigma\colon P {\:\longrightarrow\:} C_n$.
- (iv) $\stackrel{-}{e}_n$ denotes the number of surjective strict order-preserving maps $\tau\colon P\to C_n$.

For instance, if $P=C_p$, then $\Omega(n)=\binom{n+p-1}{p}$ and $\overline{\Omega}(n)=\binom{n}{p}$; while if P is a disjoint union of p points, then $\Omega(n)=\overline{\Omega}(n)=n^p$. For any P, the number $e_p=\overline{e}_p$ is equal to the number of ways of extending P to a total order and is an important numerical invariant of P. It is not hard to see that $\Omega(n)$ is equal to the number of semi-ideals in the

direct product $P \times C_{n-1}$ (see [1] for definitions). In particular, $\Omega(1) = 1$ and $\Omega(2)$ is the number of semi-ideals of P.

Theorem 1. $\Omega(n)$ and $\overline{\Omega}(n)$ are polynomials in n of degree p and leading coefficient e_D/p_s^s given by

$$\Omega(n) = \sum_{s=1}^{p} e_{s} \binom{n}{s}$$

$$\overline{\Omega}(n) = \sum_{s=1}^{p} \overline{e_s} \binom{n}{s}$$

<u>Proof.</u> For each of the $\binom{n}{s}$ subsets S of C_n of size s, there are e_s (resp. \overline{e}_s) order-preserving (resp. strict order-preserving) maps of P onto S, and the theorem follows. \square

In the language of the calculus of finite differences,

$$e_s = \Delta^s \Omega(0)$$
 ,

$$\frac{1}{e_s} = \Delta^s \overline{\Omega}(0)$$
.

The polynomial $\overline{\Omega}(n)$ is an ordered set analog of the chromatic polynomial of a graph. $\overline{\Omega}(n)$ counts the number of ways of 'coloring'. P with the colors 1, 2, ..., n such that no two comparable elements of P have the same color, and such that this coloring is 'compatible' with the ordering of P. One point at which the analogy breaks down is that the coefficients of $\overline{\Omega}(n)$ need not alternate in sign, the smallest such P having five elements.

We now come to the crucial lemma (whose proof will not be given here) in analyzing the polynomials $\Omega(n)$ and $\overline{\Omega}(n)$. Let ω be any surjective order-preserving map $P \Longrightarrow \{1,2,\ldots,p\}$, i.e., ω is an extension of P to a total order. We denote the elements of P by X_1,\ldots,X_p , where $\omega(X_i)=i$. List all permutations i_1,i_2,\ldots,i_p of $1,2,\ldots,p$ with the

Example: Let P and ω be given by $\frac{3}{1}$ $\frac{4}{2}$. Then $\mathfrak L$ and $\mathfrak L$ are given by

Lemma (i) Every order-preserving map $\sigma: P \longrightarrow C_n$ is compatible with exactly one permutation in g.

(ii) Every strict order-preserving map $\, \tau \colon P \longrightarrow C_n^{} \,$ is compatible with exactly one permutation in $\, \overline{\mathfrak{L}} \,$. $\, \Box$

Thus we obtain alternative expressions for $\Omega(n)$ and $\overline{\Omega}(n)$ by summing the contributions coming from each permutation in $\mathfrak L$ and $\overline{\mathfrak L}$. If exactly s ''<' signs appear in a given permutation, then this permutation is easily seen to contribute a term $\binom{n+p-1-s}{p}$ to $\Omega(n)$ or $\overline{\Omega}(n)$. Thus by the lemma, we obtain

Theorem 2: Let w_s (resp. \overline{w}_s) be the number of permutations in f (resp. \overline{f}) with exactly f "<" signs. Then

$$\Omega(n) = \sum_{s=0}^{p-1} w_s \left(\frac{p+n-1-s}{p} \right)$$

$$\frac{1}{\Omega}(n) = \sum_{s=0}^{p-1} \overline{w}_s \quad \left(\begin{array}{c} p+n-1-s \\ p \end{array}\right) \quad . \quad \Box$$

But clearly $\overline{w}_s = w_{p-1-s}$. Substituting into Theorem 2 and comparing the resulting expression for Ω (n) with the expression for Ω (n), we obtain the following fundamental result.

Theorem 3:
$$\overline{\Omega}$$
 (n) = $(-1)^p \Omega(-n)$

The numbers w_s are natural generalizations of the Eulerian numbers [3,pp214-215]. When P is a disjoint union of p points, then w_s is equal to the number of permutations of $1,2,\ldots,p$ with exactly s decreases between consecutive terms. This is the combinatorial definition of the Eulerian numbers $A_{p,s+1}$. We also have the generating functions

$$\sum_{n=0}^{\infty} \Omega(n) x^{n} = \left(\sum_{s=0}^{p-1} w_{s} x^{s+1}\right) / (1-x)^{p+1}$$

$$\sum_{n=0}^{\infty} \overline{\Omega}(n) x^{n} = \left(\sum_{s=0}^{p-1} \overline{w}_{s} x^{s+1}\right) / (1-x)^{p+1}$$

Theorem 3 allows the determination of all integer zeros of $\Omega(n)$. We state a slightly stronger result.

Corollary 1 We have
$$\Omega(0) = \Omega(-1) = \ldots = \Omega(-\ell) = 0$$
, while for $n > 0$,
$$(-1)^p \Omega(-\ell - n) \ge \Omega(n) > 0 .$$

One can ask when equality holds in the inequality at the end of Corollary 1. A complete answer is provided by the following two theorems. They are proved by constructing in an obvious way a strict order-preserving map $\tau\colon P\longrightarrow C_{n+\ell}$ corresponding to a given order-preserving map $\sigma\colon P\longrightarrow C_n$, and analyzing when this correspondence is bijective.

Theorem 4. $\Omega(-\ell-1)=(-1)^P$ if and only if every element of P is contained in a chain of length ℓ . \square

Theorem 5. The following three conditions are equivalent.

- (i) $\Omega(-\ell-n) = (-1)^p \Omega(n)$ for some integer n>1.
- (ii) $\Omega(-\ell-n) = (-1)^{p} \Omega(n)$ for all n.
- (iii) Every maximal chain of P has length ℓ .

It is not difficult to find ordered sets satisfying the conditions of five.

Theorem 4 but not of Theorem 5. There are four such non-isomorphic ordered sets with six elements and none smaller. Theorem 5 leads to some interesting identities which appear to be difficult to prove by purely combinatorial reasoning.

Corollary 2. If every maximal chain of P has length ℓ , then

(i)
$$2e_{p-1} = (p+\ell-1) e_p$$

(ii)
$$2\overline{e}_{p-1} = (p-\ell-1) e_{p}$$

(iii) The coefficient of n^{p-1} in $\Omega(n)$ is $\ell e_p/2(p-1)!$.

(iv)
$$\sum_{s=1}^{p} e_{s} = 2^{\ell} \sum_{s=1}^{p} \overline{e}_{s}$$

Proof By Theorem 5, we have

$$\Omega(n) = \sum_{s=1}^{p} e_{s} {n \choose s} = (-1)^{p} \sum_{s=1}^{p} e_{s} {-\ell-n \choose s}$$

Equating coefficients of n^{p-1} gives (i) while (ii) is proved similarly using $\overline{\Omega}(n)$. (iii) is then an immediate consequence of (i). We omit the proof of (iv) which involves a somewhat more complicated manipulation. \square

As a consequence of formula (i) or (ii) of the previous corollary, we get a curious though not very significant result. I have been unable to find a direct combinatorial proof of this fact.

Corollary 3 If every maximal chain of P has length ℓ , then either p- ℓ is odd or e is even.

The preceding corollary motivates the following conjecture: Let P be any finite ordered set. If the length of every maximal chain of P has the same parity as p, then e is even.

In conclusion we mention that various methods are available for explicitly determining $\Omega(n)$ for special classes of ordered sets P. For instance, one of the more interesting such classes consists of those P which are the direct product of two chains, say $P = C_r \times C_s$. It can then be shown that

$$\Omega(\mathbf{n}) = \frac{\binom{r+n-1}{r}\binom{r+n}{r}\cdots\binom{r+s+n-2}{r}}{\binom{r}{r}\binom{r+1}{r}\cdots\binom{r+s-1}{r}}$$

This formula is closely related to MacMahon's solution of the "generalized ballot problem". [2, Section 103].

References

- 1. Garrett Birkhoff, Lattice Theory, 3rd ed., American Mathematical Society (Providence, 1967)
- 2. P.A. MacMahon, Combinatory Analysis, Cambridge (1916), reprinted by Chelsea (1960)
- 3. John Riordan, An Introduction to Combinatorial Analysis, John Wiley and Sons, Inc. (New York, 1958)
- 4. Richard Stanley, Ordered Structures and Partitions, Ph.D. dissertation, Harvard University, 1970 or 1971