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INTRODUCTION
A sequence ag, 4y, . . . , @, of real numbers is said to be unimodal if for some 0 < j <
nwehave gy s @y <- - - =@;=a;,, =+ =a,and is said to be logarithmically

concave {cor log-concave for short) if a* = a;_ja;,, forall | =i <n — 1. Clearlya
log-concave sequence of positive terms is unimodal. Let us say that the sequence
dg, 4y, .+ ., G, has no internal zeros if there do not exist integers 0 =/ < j< k <n
satisfying a; # 0, 4, — 0, a; # 0. Then in fact a nonnegative log-concave sequence with
no internal zeros is unimodal. The sequence ay, a4y, . . ., a, is called symmetric if g; =
a,_; for 0 = i = n. Thus a symmetric unimodal sequence g, a, . . . , 4, has its maximum
at the middle term {n even) or middle two terms (# odd). We also say that a polynomial
a, + &g + - - - + a,g" has a certain property (such as unimodal, log-concave, or
symmetric) if its sequence a, a,, . . ., a, of coefficients has that property.

Our object here is to survey the surprisingly rich variety of methods for showing
that a sequence is log-concave or unimodal. For each method we will give examples of
its applicability to combinatorially defined sequences that arise naturally from
prablems in algebra, combinatorics, and geometry. We make no attempt, however, t0
give 2 comprehensive account of g/l work done in this area.

DIRECT COMBINATORIAL METHODS

tn this section we collect a hodgepodge of “direct” methods for showing log-
concavity or unimodality. Consider first what is probably the best-known unimodal {or
log-concave) sequence—the ath row of Pascal’s triangle:

P CYEr L)

Here log-concavity 1s easy to show because of the explicit formula (})= n!/k!(n — k)L

Indeed,
n\? nw n Y k+Dr—k+1) |
K f - lk+1) T Tk T
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A similar direct proof of the log-concavity of some related sequences appears in
{119, 120] (with further results in {121]).

We could also ask for a combinatorial proofthat the sequence (1) is log-concave. In
general, if a5, @,...,a, is any sequence of nonnegative integers for which a
combinatorial meaning is known (i.e., we have sets Sy, $), . . ., 5, such that #5; = g;),
then a construction of an explicit injection ¢S, * Sp. — S x S, vields a
combinatorial proof that af = a,_,a,,,. Similarly, a collection of injections p;:S; —
Si.1 (0 = k < j) and surjections g,:S; — S;,, (f = k = n — 1) shows combinatorially
that the sequence &g, 4y, . . . , 4, is unimodal. For the case a, = (}), we choose S to be
the set (F)of k-element subsets of n = {1.2,....n}. For any set X C n define X, =
X M j. Given (A4, B) € S,_| x Si. 1, let j be the largest integer (easily seen to exist)
for which #A4, = #B; — 1. Define C = 4; | (B — 8,), D = B, U (4 — 4;), and set
¢:(A, B) = (C, D). It is easy to verify that ¢, is an injection, as desired. See [89] for
more general results that can be proved by this technique, such as the log-concavity of
the Stirling numbers of the first kind (which are further discussed in Example 1).

A well-known generalization of the binomial coefficients (i) are the g-binomial
coefficients [;], defined for 0 = k = n by

n [~}
Rt ¥
where
lb=100102) - - - U]
_ (3)
fil=1-4g"

Here ¢ may be regarded as an indeterminate (in which case ;] is a polynomial in g of
degree k(n — k)) or as a number, If ¢ = 1, then {;] reduces to the binomial coefficient
(x). If ¢ is a prime power, then [3] is equal to the number of k-dimensional subspaces of
an n-dimensional vector space ¥, over the finite field ¥, with g elements. Using the
explicit formula (2), it is easily seen that the sequence [§1.{3]. . . ., [1] is log-concave for
g = 0 {and hence unimodal, since clearly [;] = 0 for ¢ = 0). A combinatorial proof that
igl. 181, - - .. 2] 1s log-concave was given by L. Butler (private communication). The
unimodality of the sequence {31, [T, .. ., {7] for g = O should not be confused with the
problem of showing that for fixed k and n, the coefficients ay, a,, . . ., &n_y) of the

polynomial
n kr — k) )
[k:,= Z a;“?‘
-0

are unimodal. This much more difficult problem is discussed in later sections. (The
example [3] =1 + g + 2¢* + q° + ¢* shows that the coefficients of []] need not be
log-concave.)

An extraordinary example of a combinatorial proof of unimodality was given
recently by L. Butler [19, chap. 2], [20], and is a generalization of the unimodality of
B). [71, ..., [3]. To state Butler’s result, it is convenient to use terminology from the
theory of posets (partially ordered sets). A finite poset P is graded of rank n if every
maximal chain of P has length » (or cardinality » + 1). In this case, we define the rank
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p(x) of x & Ptobe the length i of the longest chain xy < x, < - - - < x;, = x of P with
top element x. Let a; be the number of elements of P of rank /, and call P
rank-unimodal if the sequence ag, 4y, . . . , 4, is unimodal. Now consider the case where
P is the lattice of subgroups of a finite Abelian group G. If the prime factorization
of |G} is given by p? p% . . - then Pis graded of rank b, + 6, + - - .. If H & Pand
|Hl=pip3- - -, thenp(H)=¢;+ ¢+ - - - in P.

THEOREM 1: The lattice of subgroups of a finite Abelian group is rank-unimodal.

To prove the theorem, one easily reduces to the case |G | = p® where pis prime. If G
is.of type A = (A, Ay, . . .) (i.e., a product of cyclic groups of orders p™, p*, . . .), then
the number of subgroups of G of order p' is readily seen to be a polynomial function
A (p) of p. Butler in fact proves that for 0 < i < b/2, the polynomial f;;,,{p) — AP}
has nonnegative coefficients, by giving a combinatorial interpretation of the coeffi-
cients. The validity of this combinatorial interpretation rests on deep results from the
theory of symmetric functions and will not be given here. For further examples of
posets proved to be rank-unimodal or rank-log-concave by combinatorial means, see
[43], [50].

Let us now consider a further direct method for proving log-concavity or unimodal-
ity, namely, mathematical induction. We give a simple example of the use of this
methed, answering a question once raised by P. Diaconis. For integers n = Oand k = 1,
definea_,, a_g,1, . . ., ag by the condition

(x+x"Wesa x®*ta, x4 .. 4 g™ (mod x*+2 — 1). 4)
Clearly the sequence a_,, @_y, |, . . ., 4, i$ symmetric (i.e., q; = 2_,): we claim it is also
unimodal. This assertion is clear for # = 0; assume it now for some n = 0. Let ¢, be as in

i4), and define
(0 xTD = b b xR (mod £ - 1),

Then b, = a;_, + 2a; + a,,, (subscripts taken modulo 2k + 1). It is straightforward to
verify, by checking a small number of cases, that the unimodality and symmetry of the
aq; implies the same of the &;. Hence by induction the claim is proved.

A more elaborate example of an inductive proof is given in [23, theorem 3.1]. There
it is proved that if w is a finite word of length n (whose terms come from some alphabet
A). and if a, denotes the number of distinct subwords (= subsequences) of w of tength
k. then the sequence ay, qy, . . ., 4, is log-concave.

A further interesting example of the use of induction appears in {28}. (See also
[29].) Let P be a finite poset and n a positive integer. A map o:P — n 18
order-preserving (respectively, strict order-preserving) if x < y in P implies o(x) =
a(y) [respectively, o(x) < o(y)]. Fix v & P, and define f; {respectively,ﬁ) to be the
number of order-preserving (respectively, strict order-preserving) maps o:P — 0
satisfying o(v) — k. Then the sequences f;, ..., f,and £, ..., f.are log-concave {with no
internal zeros}. If we choose n = #P and insist that ¢ be an order-preventing bijection.
then the corresponding result remains true but the proof uses much deeper techniques.
See Theorem 5.

We conclude this section with a discussion of certain operations on sequences that
preserve log-concavity or unimodality.
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ProposiTION 1: If A(g) and B(g) are symmetric unimodal polynomials with
nonnegative coefficients, then so is A(g)B(g).
Proof: Let
AQ) =2 _aq. By =)_bg
i=0 j=0

Setr=L1m/2],5s=1n/2} Then

A@D =Y (@—a)d+d" + -+,

iw}

B(q) - Zo (b= b)g + ¢+« o - + g7,

whence
A(q)B(q)
= Z Z (@ — a;_){(b; — b;y) - G+ -+ + -+ 5
=0 j=0
Now the polynomial (¢’ + - - + + ¢* )¢’ + - - - + ¢"7) is immediately seen to be

symmetric and unimodal with center of symmetry at {m + n)/2. Since
(a; — a;. )b, — b, )=0forO=<i=<rand0=j=y,it follows from (5) that 4(g)B(q)
is unimodal (and symmetric with center (m + n)/2). O

Note that the assumption of symmetry in Proposition 1 cannot be dropped. For
instance,

(@ +9+3)=¢"+¢+ 74+ 6g + 9.

ExercCISE: Does Proposition 1 remain true if we assume that only A{q) is
symmetric?

PROPOSITION 2: If A(q) and B(g) are log-concave polynomials with nonnegative
coefficients and no internal zero coefficients, then so is A(g}B(g).

Proof: Write 4(q) = Z7'*" a,q' and B(g) = Z7*" bg', where deg A = mand deg B =
n If X and Y are r x r real matrices afl of whose k x k minors are nonnegative, then the
Cauchy—Binet theorem shows that the same is true for the matrix X'V. Moreover, it is
easily seen that if ¢, ¢y, . . ., €, is nonnegative and log-concave with no internal zeros,
then ¢c; = ¢;_,c;,, whenever | < jand r = 0. Now take k = 2,

[ Q a; - - O A [ bﬂ bI T bm+rx i
dy - - Qyypn-1 bﬂ A bm+n—l
X- Y-
L a4y . L by o

and the proof follows. O
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Prapasitions 1 and 2 (which have many other proofs) go far back (I am unaware of
their precise origin) and are frequently rediscovered (e.g., [6]). For some results
similar to Proposition 2, but only assuming unimodality of the coefficients, see [79].
For a direct combinatorial application of Proposition 2, see [40]. A tremendous
number of variations and extensions of Propositions 1 and 2 may be found in [60] and
more recently [16]; in particular, our Proposition 1 is part of [60, theorem 1.2, p. 394].
Moreover, the following result can be deduced from the case » = | of [60, theorem 3.1,
p. 21].

PROPOSITION 3: Let A be the class of all polynomials with nonnegative coefficients
with the foilowing property: If A{g) & A and B(g) is any polynomial with nonnegative
unimodal coefficients, then A(g)8(q) has unimodal coefficients. Then A(g) & A if
and only if A(q) has log-concave nonnegative coefficients with no internal zeros.

Note that Proposition 2 is an immediate consequence of Proposition 3, since A is
clearly closed under muitiplication.

POLYNOMIALS WITH REAL ZEROS

The following basic result goes back to Newton; see [23, p. 270] or (53, p. 52].
THEOREM 2: Let

P(x) - Z (”) a,x'

be a (real) polynomial with real zeros. Then a} =4,

Note: If we write P(x) = Zb;x’ (so b; = (]}, then the condition a} = a;_,a;,

becomes
1 1
bfz j—-lbj+|(I +})(l + n--j]‘

which is stronger than 57 > b,_5,,,.

Proaf of Theorem 2: Let [} = (d/dx). By Rolle’s theorem, Q(x) = D/7'P(x) has
real zeros, and thus also R(x) = x"*'Q(1/x). Again by Rolle’s theorem, D"~ 'R (x)
has real zeros. But one computes easily that

n!
D TR(x) = E(a-_]xz + 2a;x + a;,)

In order for this quadratic polynomia! to have real zeros, we must have a’ =

aj_la‘,_‘_]. D

There are various methads for showing that polynomials have real zeros, leading to
several results of combinatorial interest. One basic method for showing that a sequence
FPo(x), P\(x), . . . of polynomials has real zeros is to show by induction that the
polynomials form a Sturm sequence, that is, they have interlaced simple (real) zeros.



STANLEY: LOG-CONCAVE & UNIMODAL SEQUENCES 505

For instance, the Hermite polynomials

LrfZl (_ 1)kn!(2x)n—2k

H(x)= D

o  Klin — 2k)

satisfy
X d -xt
Hy(x)= —e" — (™" H,_,(x)).
dx

By induction H,_,(x) has n — 1 real zeros. Since e*‘JH,,_I(x) —Dasx — +x, 1t
follows that H,{x) has n real zeros interlaced by the zeros of H,_, (x). Let us consider a
more substantial example.

EXAMPLE 1: Let G be a finite graph (multiple edges allowed), and let #; be the
number of matchings of size j (i.e., the number of j-element sets M of edges of &, no
two edges in M having a commion vertex). Heilmann and Lieb [55, theorem 4.2] give
essentially three different proofs, based on Sturm sequences, that the polynomial X 7,x/
has real zeros. Hence the sequence

f t) I

A

is log-concave, where m denotes the largest size of 2 matching in G. This result was
proved independently by Gruber and Kunz [51] and by Nijenhuis [76] for bipartite
rgraphs, and was given an entirely different proof in [46, corollary 5.2]. A direct proof

of the unimodality of the sequence ty, 1,, . . ., 1, appears in [92). Some more general
results are discussed in [128]. If we take (7 to be the bipartite graph on vertices u, .. .,
u, and vy, . . . , v, With u, connected 10 vy, vy, . . ., v;, then ¢, 15 the Stirling number

S(n+ 1, n+1 - j) of the second kind [25, p. 204] [113, chap. 1.4}, Thus the
polynomial =; S{xn, i)x’ has real zeros, a result originally due to Harper [54] (see also
[22, 33, 62, 65, 67]). Incidentally, if s(n, /) denotes a Stirling number of the first kind
[so (—=1)"'s(n, i) is the number of permutations of n objects with i cycles], then

S (=1 s(n, 5 = x(x + 1) - - - {x + n — 1), which trivially has real zeros.

Let us consider another combinatorial situation in which polynomials with real
zeros arise. Let P be a finite partially ordered set, with elements x,, . . . , x, labeled so
that if x; < x;in P, then i < jin Z. Let ¢; = ¢;(P) denote the number of surjective
order-preserving maps o:P — {1, 2, .. ., jl. Let & = 2,(P) denote the number of strict
surjective order-preserving maps 7P — {1.2.... ,j}. Let w; — w;( P} denote the number
of permutations « = aya, - - - a,0of }, 2, ..., nsatisfying:

(a) ifx, < x, in P, then r < s (i.e., 7 is a linear extension of P),
(b) j = #ira, > a,,,}, the number of descents of =, denoted d(x).

Define E(q) = Zeq’, Elg) = Z&q', W(g) = Zw;q’. Using the theory of
P-partitions developed in {97], it follows that

gWig) = (I — )"E(q/(1 ~ ¢)),
FwW/g) = - P"E(g/(l - ).
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Hence for fixed £, either all or none of £(q), E(q), W(g) have all their zeros real
(essentially a result of R. Simion [96, p. 19]). The following conjecture appears in [75,
p. 1141,

CONIECTURE 1: For any finite poset P, the polynomial E({g) [and hence £(g) and
Wiq)] has real zeros.

This conjecture has been proved by R. Simion [96] in the case where Pis a disjoint
union of chains, using the concept of multiindexed Sturm sequences. Further special
cases are proved in [16], where a more general conjecture is discussed. In the case
where P is an antichain (disjoint union of points), we have

Wiq) = 2, ¢ = g 409, (6)
L,
where A4,(g) is an Eulerian polynomial [25, pp. 244-246], [113, chap. 1.3] and where
X, denotes the symmetric group Sym(a) of all permutations of m. It is well known (e.g.,
{25, p. 292]1) that Fulerian polynomials have real zeros. A refinement of the
unimodality of 4,(g) will be given in Proposition 12 in the eighth section. Let us also
mention {!] as a combinatorial application of Theorem 2.

Another weli-known class of polynomials with real zeros consists of characteristic
polynomials of real symmetric matrices. More generally, we have the following
somewhat less well-known resubt. An even more general result is given by Schnetder
[91] and is also discussed in [43, theorem 3.2].

PROPOSITION 4: If 4 and B are n x n real matrices with 4 positive semidefinite
(written 4 = 0} and B symmetric, then the product 48 has real cigenvalues.
Equivalently, if B is symmetric and P = 0, then the polynomial det(B + gP) has real
ZeTos.

Proof: Since 4 = 0, it has 2 square root C = 0. Then
det(AB — gI) = det{(C’B — gi)
= det(CBC — gI),

since C(CB) and (CB)C have the same characteristic polynomial. But CBC is
symmetric, and the proof follows. [

Note that Proposition 4 is false if we assume only that 4 and B are symmetric. For

instance, take
0 1 t 0 0 -1
) = . B - .
1 0] (O —1] A (1 O)

Let us now mention some combinatorial applications of Proposition 4. The first
invalves only the characteristic polynomial of a symmetric matrix. Let G be a finite
loopless graph, with multiple edges allowed, on the vertex set V = {u,, . . ., u,). Let Cbe
the matrix with rows and columns indexed by V given by

A=

—{number of edges between u and v), ifu#v
Cp = M

degree (u), fu=uv
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Therr C= 0, and
det(C + gI} - 2_ a,(G)q,

where 4;(G) is the number of spanning forests F of G with each connected component
of F rooted at a vertex, such that F has exactly i components. This is a result of
Kelmans (see {26, theorem 1.4, p. 38]). Hence we obtain (since ay() = 0):

PROPOSITION 5: Let G be a finite graph (ailowing multiple edges) with p vertices,
and set

a(GY = ) v(F),
F
where F ranges over all {-component spanning forests of G and where

Y(FYy==t4 « - 1,

with 7,, . . ., t; being the number of vertices of the components of F. Then the

sequence
p—1 -1} . p—1
a‘(G)/( . }aztc)/( 1 ]g...,a,,(c)/(p_l)

is log-concave {with no internal zeros).

The preceding result suggests naturaily that we look at spanning forests without
the condition that the components are rooted.

CONIJECTURE 2: Let b; be the number of spanning forests with 7 edges {or p — i
components) of a graph G with p vertices and ¢ components. Then the sequence

LY (o St

is log-concave. (It is in fact not known whether the sequence &y, by, . . ., b, . is
log-concave or even unimodal.)

Conjecture 2 has a natural matroid-theoretic generalization, due to J. H. Mason
[72], where spanning forests with i edges are replaced by independent sets of i points.
See [95] and [129, p. 298]. Some progress on this conjecture has been made by
Dowling [34] and Mahoney {71]. See also {27].

For our second example of the use of Proposition 4, let G be 2 finite connected
graph (say without loops), and let B be the adjacency matrix of some orientation of G,
that is, the rows of B are indexed by the vertices of G, and the columns by the (directed)
edges, with

1, if e points out of
B, =1-1, if e points into &

0, otherwise.
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Thus € = BB, where Cis as in (7). Let S be a subset of the edge set £ of G, and let S=
E — S. Define diagonal matrices D, Dindexed by E x E, as follows:

1, ifec S
Dy h
0, ifee= S
_ 0, ifee §
Dee=‘ —_
1, ifeec 8.

Then BDB' = 0 and BDB' = 0. Let M, denote the matrix M with its first row and
column removed, and set C = (BDB )y and C = (BDB)e. Thus C=0and C= 0. A
special case of a result of C. Godsil [45, sec. 3] asserts that if

det(gC + C) — S aq,
then g, is the number of spanning trees of G that intersect S in exactly / edges. Hence by
Proposition 4, we conclude the following.

PROPOSITION 6: Let g; be as previously, and let s = £S. Then the polynomial = ag’
has real zeros, so the sequence

N

The log-concavity of {8) was first proved in [104, corollary 2.4} using the techniques
of the fifth section. The stronger result that Z a,q' has real zeros is due to Godsil [45,
sec. 3]. More general results of this nature also appear in [104] and [45]. There are a
host of conjectures related to Propositions 4 and 6, in addition to Conjecture 2. We
mention only the most striking here.

ConNJECTURE 3: (a) (R. C. Read [86, p. 68] for unimodality, D. J. A, Welsh [Il 29,

is log-concave.

exercise 5, p. 266] for log-concavity.) Let Pg(q) = a,¢° — a,_,4*' + - - - + (~1¥aq
be the chromatic polynomial of a finite graph (or more generatly the characteristic
potynomial of a finite matroid [129, p. 262}). Then the sequence a,, a,, . . . , 4, is

log-cancave (or even just unimodal).

(b) (G.-C. Rota for unimodality, D. J. A. Welsh [129, p. 289] for log-concavity.)
Let W, be the number of flats of rank k& of a finite matroid of rank #. Then the sequence
Wo, Wy, ..., W,is log-concave (or even just unimodal). Equivalently, finite geometric
lattices are rank-log-concave {or even just rank-unimodal).

For further wark related to (a), see [56], while for (b) see [35], [94), [113, exercise
3.37], [116], [117]. A further possible unimodal sequence arising from graph theory is
discussed in [13, prob. 2], but a counterexample (the truncated dodecahedron) was
recently found by M. Watkins and J. Shearer.

Theorem 2 deals with the log-concavity of the sequence aq, a,, . . ., 4, defined by the
polynomial P(x) = Z_, (}) a,x". We could also ask under what {weaker) circumstances
the coefficients themselves are log-concave. For the sake of completeness we give such
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a result, although we know of no combinatorial applications. This result appears, for
example, as the case r = 2 of {60, theorem 7.1, p. 415].

PROPOSITION 7: Let Q{x) = 2o bx', where b, is real, by # 0, and b, > 0. Suppose
that the zeros { of Q (x) lie in the sector {{:(27/3) < arg ¢ = (4x/3)}. Then each b, > 0
and the sequence by, &, . . ., b, is log-concave.

Proof: We may assume b, = 1. Factor {x) into irreducible {over R) linear and
quadratic factors with real coefficients. The linear factors must be of the form x + g,
a > 0. One easily checks that if x* + cx + d is a quadratic factor, then the hypothesis
on its zeros yields ¢ > 0, d > 0, and ¢? = 4. The proof follows from Proposition 2. O

ANALYTIC TECHNIQUES

The basic idea here is to obtain an analytic expression (such as a contour integral)
for each term a; of a sequence a4, a,, . . . , @,, and then use analytic techniques to
estimate a&; accurately enough to prove unimodality. 1t is rather surprising that
sufficiently accurate estimates can be made for a wide variety of problems. The
prototype for this methed is a beautiful result of Szekeres [118] concerning the number
p(n, k) of partitions of # into k parts. It is well known and ¢asy to see that

x*
gp(n,k)x”=(1 -l = xD - (1 =x5T

Hence

Sk—n—l dS

1
po”’“’%[(l_s)(l_sz)..-(l_s*)’

the integral being around a circle [s{ = p < 1 in the complex plane. By an intricate use
of the method of steepest descent, Szekeres showed the following.

THEOREM 3: For n sufficiently large (conjecturally for all ), the sequence p(n, 1),
p(n 2), ..., p(n, n)is unimodal. In fact, there exists a real number k; = &, (n) such
that p(n, k) < p{n,k + 1) for k < ky, and p(n, k) > p(n, k + 1} for k > k.
Moreover,

.3 3 1., 1 log* n
kny=cvnlL + ¢ (2+2L 4L)—2+0( T ),
where L = log{c Vi), ¢ — 6/

Actually, an examination of Szekeres’s proof shows that he overiooked the fact that
pin, ny = p(n, n— 1), but otherwise his result appears valid. It follows that we can
have p{n, k) = p(n. k + 1) for at most one value of &k # n — 1, and it is still open
whether equality can ever occur. Szekeres'’s paper alsc contains analogous results for
partitions of » into k distinct parts. A variation of Theorem 3 due to Odlyzko and
Richmond {77] treats the case of ordered partitions (compesitions) of # into k parts.

, Entringer [41] used analytic techniques to show that the polynomial (1 + ¢)*(1 +

g°¥ - -+ (1 + q") is unimodal. This result was greatly extended by Odlyzko and
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Richmond [78] to show that for *“nicely behaved” sequences a,, a,, ... of positive
integers, the polynamial (1 + ¢*)}{1 + ¢™) - - - (1 + g™) is “almost™ unimodal for all
n, that is, there is an integer m = 0 (independent of ) such thatif (1 + ¢*) - - - (1 +
g™) = Z c..q", then the sequence

Con o 'Cm+l.m Ty cx—m.n

is unimodal, where s = T g;. For any given “nice” sequence a;, 4, - . . , a finite amount
of computation (albeit sometimes rather lengthy and requiring a computer} will decide
whether the polynomials (1 + ¢®) - - - (1 + ¢™)} are indeed unimodal, not just
*almost™ unimodal. For instance, Odiyzko and Richmond show by these means that
the polynomial (I + g){(1 + ¢*) - - - (1 + q") is 'unimodal, a result previously
obtained by algebraic techniques (see Example 3 in the seventh section). Along the
same lines, Almkvist [4] shows that the polynomial (1 + ¢)(1 + ¢*) - - - (1 + g ")
is unimodal, except at the coefficient of g and ¢” ~% Almkvist also conjectures that for
even r = 2 or for odd r = 3 and » large enough {probably #» = 11}, the polyromial -
Hi., - (! — ¢®)/(1 — ¢*) is unimodal. For r = 2 we get the polynomial (1 + ¢}
(1 + g% - - - (1 + ¢ just discussed, while the case r = 4 is settied in [3]. In [5] the
conjecture is proved for 3 < » < 20 and for » = 100 and 101 by refining the methods of
Qdlyzko-Richmond.

Many of the polynomials that 2ppear later in this paper, when there is a reasonable
formula for them, can be proved to be unimodal using the Odlyzke-Richmond
techniques. We will mention several such examples at the appropriate points.

MIXED YVOLUMES

Let K and L be convex bodies { = nonempty, compact, convex sets) in R". For x, y =
0, define the Minkowski sum

xK+yL={xa+yBa E K 8E L}

Let V denote n-dimensional volume {or Lebesgue measure). It was shown essentialiy
by Minkowski (though he treated only the case n < 3) that there are real numbers
Vi(K, L) = 0 satisfying

VixK +yL) = (”) VAK, Lyx"'y',

i)

for all x, ¥ = 0. The number V,(K, L) is called the ith mixed volume of K and L.
Settingx =1,y =0orx =0,y = 1 shows that Vy(K, L) = ¥(K)and V,(K, L) = V(L)
$0 the mixed volumes V;(K, L) may be regarded as “interpoiating™ between V{K) and
V(L). '

The basic result that we need concerning mixed volumes was proved independently
by A. D. Aleksandrov [2] and W. Fenchel [42], and is known as the 4leksandrov-
Fenchel inequalities. The proof is difficuit and will not be given here. For further
information on mixed volumes and the Aleksandrov—Fenchel inequalities, see [14, 18,
38,66, 81, 123, 124].
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THEOREM 4 (The Aleksandrov-Fenchel inequalities): For any convex bodies K, L
in B, the sequence

VoK, L), Vi(K, L), ... . V,(K, L} ®

is log-concave (with no internal zeros).

It remains to find convex bodies K, L for which the seguence (9} is of combinatorial
interest. In [104, coroliary 2.4] a proof was given of Proposition 6 (in fact, of a slight
generalization) based on this idea. For a different application {104, theorem 3.1]
{compare with the result of [28] mentioned in the second section), let P be a finite poset
with n elements, and fix & P. Let N, = N,(v) by the number of order-preserving
bijections o:P — {1, 2, . .., n} satisfying o(v) = i.

THEOREM 5: The sequence V,, N, . .., N, is log-concave (with no internal zeros).

Sketch of proof Let P = {v,,...,v,_;, v} Let K be the set of all points
{t, ..., 1,_;) E R*' satisfying:

(a) 0 = ti' = ].,
(b) ifv; = v;in P, then 1, < ¢,
(¢) if; <w thent, =0,

Simitarly define L C R™ by (a), (b), and:
(c) ifo, > o, thent, = 1.

Then K and L are convex polytopes. By an explicit decomposition of XK + yL into
products of simplices, it can be computed that V;(X, L) = N,,;/(n — 1) The proof
follows from Theorem 4. O

Theorem 5 settles a conjecture of Chung, Fishburn, and Graham {24], strengthen-
ing an earlier unpublished conjecture of R. Rivest that the sequence N, ..., N, is
unimodal.

As pointed out in [104, corollary 3.3], a suitable choice of P and v yields the
following result.

COROLLARY [: Let § be a subset of {1,2,...,n— 1) and fix | = j < n. Define
@; = w;(S,j) 10 be the number of permutations = = g,a, - - - a, of n satisfying
{k: ap > ay,,} = S and 4; = i. Then the sequence w,, w,, . . ., w, is log-concave.

The following variant of Theorem 5 was proved by J. Kahn and M. Saks [59] using
the same technique.

THEOREM 6: Let P be a finite n-element poset, and fix u and v in P. Let N} =

Ni(u, v) be the number of order-preserving bijections o:P — {1,2, ..., n} satisfying
o{v) — o{u) = i. Then the two sequences N}, Nj,...,N._, and N,
N5 ..., N,y are log-concave,

Kahn and Saks use this result to prove the following remarkable th?e:orcm, which
settles a conjecture of M. Fredman.

THEOREM 7: Let P be a finite n-element poset that is not a chain. Then there exists
elements u, » & P such that if 8 denotes the fraction of order-preserving bijections
o:f —11,2,. .., n}satisfying o(u) < o), then 3/11 < B < 8/11.
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A further variant of Theorem 5 appears in [111, theorem 6.2], again proved by
choosing a suitable K and L.

THEOREM 8: Let P be a finite #-element poset, and fix v & P. Let M; = M {v) be
the number of order-preserving bijections o:P — {1, . . ., n}such that if () = &, then i
is the largest integer < k for which ¢ '(k = 1), 07 "(k — 2),....07'(k — i) are all
incomparable with . Then the sequence My, M, ..., M,_, is log-concave.

While no proof is known of Theorem 5-Theorem 8 avoiding the Aleksandrov—
Fenchel tnequalities, in the case of Theorem 8 it is easy to give a direct proof [111,
theorem 6.5 that My= M, = . . . = M,_,.

Let us also mention a curious result of Rees and Sharp [87], which in a special case
considered by Teissier {112] is equivalent to a special case of a “complementary”
version of the Aleksandrov—Fenchel inequalities.

THEOREM 9: Let R be a (commutative, noetherian) local ring {with identity), with
maximal ideal »r and Krull dimension 4. Let 7 and J be m-primary ideals of R. It is
known that for sufficiently [arge positive integers r and s, the length {{(R/I7J%} of the
quotient ring R/I"J’ is a pelynomial function of r and s of total degree 4. Write the
terms of total degree o of this polynomial as

1<~ (4 d—k K
d‘!k_o(kJEkU’J)r L

Then the sequence E4(f,J), E\(LJ),...,E, (I, J) is log-convex, that is, Ei =
Ey_1Ey .. {Moreover, each £, is a nonnegative integer.)

For the benefit of readers knowledgeable about commutative algebra, we mention
some further sequences arising from this area.

CONJECTURE 4: {a) Let R = R, © R, © - .. be a graded (noetherian)
Cohen—Macaulay (or perhaps Gorenstein) domain over a field X = R, which is
generated by R; and has Krull dimension 4. Let H(R, m) = dim,R,, be the Hilbert
function of R, and write

2 HR mx" = (1 - x)-‘f: hox;.

m=0 iw0

Then the sequence &g, A,, . . ., A, 1s log-concave.

(b} Let 4 be a regular local ring with residuc field K, and let 7 be an ideal of A for_
which R = A4/I'is Cohen—Macaulay (or perhaps Gorenstein). (Or perhaps we should

take 4 — K[x;, ..., x,] and [ generated by homogeneous polynomials.)
Let 8; = dimyTor/(R. K), the ith Betti number of R (as an 4A-module). Then the
sequence Sy, 8, . . ., B,_q15 log-concave, where n = dim 4 and 4 — dim R.

Conjecture 4 would have many combinatorial applications. For instance, the
validity of Conjecture 4(a) for normal rings generated by monomials of the same
degree would imply that the numerators of the rational functions Fg(Y) (for G
bipartite) of [99] are log-concave, as well as the polynomials W(g) of Conjecture 1.
Let us mention, however, that we are not too confident about Conjecture 4 and would
not be at all surprised if it turned out to be false. If in Conjecture 4(a) we assume that



STANLEY: LOG-CONCAVE & UNIMODAL SEQUENCES 513

R is Gorenstein but not a domain, then [100, example 4.3] gives a counterexample to
the unimodality (and hence log-concavity) of the sequence hg, h,, ..., A,. Related
results appear in [63].

LINEAR ALGEBRA AND FINITE GROUPS

Recall that in the second section we discussed the possibility of proving that two
sets S and T satisfy #5 = #T by constructing an explicit injection p:5 — 7. Rather
than dealing directly with S and T, we can greatly extend the possibilities for p by
considering formal linear combinations of elements of S and T. More generaliy, let a,,
4, ...,4a, be a sequence that we want to prove is symmetric and unimodal. {The
methods we are about to discuss only apply to symmetric sequences. Usually symmetry
will be quite easy to prove directly.) Suppose we can find vector spaces Vo, Vy, ..., V,
{over C, say) and linear transformations ¢V, — V,,,, 0 = k = L{n— 1)/2],
satisfying:

(a} dim V, = g;, O=<i=n,

{b) ¢ isinjectivefor0 =k =L(n — t)/2]
() Vi=V,_;.

Then clearly the sequence 4y, 4, - .. , @, is symmetric and unimodal. Let us call this
method for showing unimodality the /linear algebra paradigm (LAP), and denote it by
LAP(V,, ..., V,).

There are some minor varianis of LAP that sometimes artse (and that we will also
regard as instances of LAP).

VARIATION 1: We now have linear transformations ¢, for 0 < k = n — 1, and (b)
and (c) are replaced by:

(t) ForO=k =L(n— 1)/2)], the composition

¢n—k-—l o ¢k+]¢k:Vk—'—’ Vn-—k
is a bijection.
Clearly (b') implies (b) and (c). We also get that ¢, is surjective forLn/2] <=k =n —
1. In all known applications of LAP, there will be “natural” isomorphisms V; = V,_,
and pairings ¥; x V., — C that make ¢, and ¢,_,_, adjoints of one another. Hence
injectivity of ¢ for 0 < k < [(» — 1)/21 automatically yields surjectivity forLn/2] =
k =n — 1. Since symmetry will be easy to prove directly, however, we have no reason
here to consider ¢, forin/2d =k =<n - 1.

VARIATION 2: Sometimes it is convenient to consider a single graded vector space
V=1, ®V,® ... @V, andasingle linear transformation ¢ with ¢{e) = ¢ (v) if
v Vi, 0 =k < n and ¢(v) = 0if 2 & V,. This amounts only to a change in
notation.

The most direct way of constructing the vector spaces ¥V, (as alluded to at the
beginning of this section) is the following. If we have sets S, S, . . ., S, with a, — #5,
and & = g,_g, thea let ¥} = CS,, the complex vector space with basis S,. Thus, CS,
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consists of all formal linear combinations

Z X, a, & C.

xC S,
(Much of what we say remains valid for any field K replacing €, but for our purposes it
suffices to consider only K = €. Conceivably, however, there might be an application of
modular representations of finite groups to unimodality.) In order to apply LAP, it
suffices to construct linear transformations

¢_§ZCS;‘—’CS,¢+1, OEkEL{H - 1)/2.' B (]0}

and then to prove their injectivity. The most important example for our purposes is the
following. Let M be a finite multiset (set with repeated elements) of cardinality n, and
let S, = () denote the set of k-element submultisets of M. For example, if M = {1, 1,
2,3} thenn = 4and §; = {{1, 1,2}, {1, 1, 3}, {1, 2, 31})

PROPOSITION 8: Let S, be as before, and define ¢,:CS, — CS,,, by

o(T)= 2 U, TES, (11)
v

Then ¢y is injective for 0 = k = L(n — 1)/21 (and surjective for Ln/2] =k <n —
1.

Proof: This is a fairly easy exercise in linear algebra, essentially the same argument
as that used to prove [85, theorem 3.1] (also proved in [21]). For the case where M isa
set, a particularly elegant proof and additional references appear in {49]. O

We conciude from Proposition 8 that if a; denotes the number of k-clement
submultisets of M, then @, = a, < - - - < a5, Since 4, = a,_, is clear, we have that
dgy, @y, - . ., a, is unimodal. This result is easy to prove by other means. For instance, if
the multiplicities of the elements of M are m,, n1s, . . . ., m,, then

r
n

Yad-Tla+a+q+ - +qm,

k=0 iml

so unimodality follows from Proposition I. We shall soon see, however, some deeper
applications of Proposition 8.

[n order to get more interesting examples, we introduce some simple concepts from
group theory. Let & be a finite group acting on a complex vector space V. [In other
words, we are given a representation G — GL(V).] Let ¥ denote the fixed subspace,
that is,

Ve & Vim.o=vforalle € G| {12)
Suppose also that G acts an the vector space W and that
G V—W (13)
is an injective linear transformation commuting with the action of G, that is,

- dl) = iz - 2), r& G v EV (14}
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If » € VS, then by (14) ¢:{v) & WE. Hence ¢ maps V° to W¥ and of course still is
injective. Thus we obtain the following,.

PROPOSITION 9: Suppose Vo, V|, ..., ¥, are complex vector spaces and that we have
linear transformations ¢,: ¥, — V., that are injective for 0 < k < L(n — 1)/2d.
Suppose the finite group G acts on each ¥, and commutes with each ¢;, and that V, £
V, . (i.e.. ¥, and V,_, are isomorphic as G-modules). Let a, = dim V. Then the
Sequence ay, 4. - - - , &, 18 symmetric and unimodal.

Proposition 9 says in effect that if LAP(V,, ..., V,) “‘commutes” with the action of
G, then there follows LAP(VS, ..., V).

Now suppose that S, 8, .. ., S, are finite sets and that ¥, = CS, in the preceding
proposition. Suppose that G acts on each S;. (We may regard G as a subgroup of the
symmetric group Sym(S,) of all permutations of .5, since nothing is gained by
allowing G to act nonfaithfuliy.) Thus G acts on V, by

e Z ax = P o (T - x),
x5 XES;
{This is just the usual way of identifying a permutation representation with a linear
representation.) Let X/G denote the set of G-orbits of X. By a standard result in group
theory (equivalent to Burnside’s lemma), #(X/G) = dim(CX)®. Hence from Proposi-
tion 9 we obtain the following.

COROLLARY 2: Suppose & acts on finite sets S;, S, . . ., 5, and that there are
injective linear transformations ¢,-CS, — CS,,,,0 <k <L(n — 1)/2] that commute
with the action of G. Suppose also that the actions of G on 8§, and S,_; are isomorphic,
0 =< k = n Let a, = #(S,/G), the number of G-orbits of S;. Then the sequence ay,
4, ..., .18 symmetric and unimodal.

Let us apply Corollary 2 to the situation of Proposition 8. Let X be a finite set on
which G acts. Let M be an n-element multiset with elements from X such thatif x, ¥y &
X belong to the same G-orbit, then x and y have the same multipticity in M. We call M
a G-compatible multiset. Let S, = (¥) as in Proposition 8, and let N & S, say N -
{x7, . .., x*} (the notation meaning that x; has multiplicity n,in N,s0 Zn, — k). Then G
acts on S; by the rule

- N= {(‘J’I’ . xl)"]y- - !(T N xr)”r}‘

(Since M is G-compatible, we have = - N & S}, so & does indeed act on §,.)

THEOREM 10: Let a, = #(5,/G), the number of G-orbits of S; = (}/). Then the
sequence &, &, . . - , 4, 18 symmetric and unimodal.

Proof: The linear transformation ¢,:CS, — CSy., given by (11) clearly commutes
with the action of G, and by Proposition 8 ¢, is injective for 0 < k < [{n — 1)/2].
Maoreover, the permutation representations of G on S, and S,_; are isomorphic, via the
map sending N = S, 1o its complement M — N. The proof follows from Corollary
2. O

Theorem 10 in the case when M is a set is originally due to Livingstone and Wagner
[68]. See also 82, 109, 131] and the references therein for further information. Let us
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consider some applications, the first relatively straightforward. Let X be an n-element
set, and let S = (¥)be the set of 2-clement subsets of S. An element of (§) may be
regarded as a graph with k edges. Let G be the group of permutations of S induced by
Sym(X). Then two graphs T, IV & (J) are in the same G-orbit if and only if they are
isomorphic. Hence we have proved the following proposition.

PROPOSITION 10: If 4, is the number of nonisomorphic graphs with » vertices and &
edges, then the sequence ag, a,, . . ., .,y is symmetric and unimodal.

Of course, the same reasoning applies to many other structures besides graphs. J.
Sheehan and E. M. Wright have raised the question as to whethera; < a,,  forl =i <
Lia(h] — | in Propesition 10.

For a less obvious application of Theorem 10, consider an #-element poset P. An
order ideal of Pis a subset F of P such thatif x & Fand y = x, then y & I. Let j;, =
Ji{P) denote the number of k-element order ideals of P. It is often an interesting
problem to decide whether the sequence jy, /i, . . - , j, is unimodal. Here we will be
concerned with the case P =1 x m, the product of the /-elementchain <2 < - -+ </
and the m-element chain 1 < 2 < - - - < m. A k-element order ideal of ] x m may be
identified with a partitionm =X = A, = + - - =z A, = 0 of the integer £ = Z X; into at
most / parts A; > 0, and with largest part A, at most m. Namely, let

No=max{ j: (i, j) € 1}

It is well known (e.g., [7, theorem 3.1] and [113, proposition 1.3.19]) that

m
Y Al xme ="t ™, (15)
&m0 I

where ['$™] denotes the g-binomial coefficient, as given by (2).
THEOREM 11: The g-binomial coefficient [*4™] is symmetric and unimodal.

Proof: Symmetry is clear, either from the combinatorial definition of j, {1 x m) jby
associating an order ideal / with its complement in the dual poset {} x m)*] or the
formula (2). (Symmetry will also follow from Theorem 10.) To show unimodatity.
consider all permutations = of 1 x m of the form

T L) =000,

where e < Z;and p, ..., p, © 2, (Here T, and I,, denote the symmetric groups onl
and m, respectively.) The set of all !m! such permutations forms a subgroup of
Sym(l x m) that by definition is the wreath product _§Z,. A little thought shows that
each orbit of (";*) contains a unigue order ideal (of cardinality k). Hence the number
#('e™) / £,§Z,, of orbits of k-element subsets of | x m is j¢(I x m), and the proof follows
from Theorem 10. O

A result immediately implying Theorem 11, known as the Capley-Sylvester
theorem, was conjectured by Cayley in the 1850s and proved by Sylvester in 1878. The
first explicit statement that the Cayley-Sylvester theorem implies the unimodality of
['+™] is due to Elliott in 1913. The work of Cayley and Sylvester takes place in the
context of the tnvariant theory of binary forms and is essentially equivalent to the
technique given in the next section. The proof we have just given is the simplest proof to
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date and first appeared in {105, corollary 9.6}; an intricate combinatorial proof was
recently given by O’Hara [80] and further expounded in [132]. (A combinatorial proof
for the case / = 4 is included in stronger results of [88] and [130]. The paper [127] is
possibly relevant, but T have not seen a copy.) For historical references, see {84]. It is
possible (as mentioned to me by A, Odlyzko) to give an analytic proof along the lines of
[78]. Other proofs of Theorem 11 have been given using sophisticated techniques from
representation theory, algebraic geometry, etc., but they all are essentially equivalent
to the original proof of Sylvester. By analyzing more closely the linear transformations
d:C (™) — C (X%, one can obtain much additional information about the poset 1 x
m and related posets. See, for instance, [102, 103, 109] for further details. An
interesting conjectured variation of Theorem 11 invelving rook configurations appears
in {44, p. 250].

EXERCISE: Let the symmetric group X, act on the multiset M = {l’,.. ., '} by
permuting 1, . .., #. Show that

Eblee

and deduce from this Theorem 11.

Theorem 10 can be generalized by appealing to the representation theory of the
finite group G. Let G denote the set of inequivalent irreducible complex linear
representations of G. The cardinality of G is thus equal to the number of conjugacy
classes of G. (A good reference for the basic concepts of representation theory that we
will use is [93].) If G acts on a complex vector space ¥ (equivalently, we are given a
representation o:G — GL(V)), then ¥ breaks up into a direct sum of isotypic
components,

v-{Iv,.

pEG

where each V, is a direct sum of some number m,(p) = n1,(p) of copies of irreducible
subspaces affording p. The number m, {p) is the multiplicity of pin o, and

dim ¥V =dego - )_dimV, =) m,(o)(deg p).
P #

If « denotes the trivial representation of G, then the space ¥ of (12)is just V.

Now let ¢:V ~— W as in (13), If ¢ commutes with the action of &, then Schur’s
lemma {93, p. 13] ensures that ¢(V,) C W, forall p & G. Hence if  is injective, then
dim ¥V, = dim W,, so

my(p) = muip). (16}

THEOREM 12 (see {103, propesition 9.4]); Let G act on the ﬁpite set X, and let Af be
a G-compatible n-element multiset on X. If 0 < k < nand p & G, then let /1,(p) denote
the multiplicity of p in the action of G on the set (}') of k-element submultisets of M.
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Then the sequence

my(p), n(p), . . ., mu(p)
is symmetric and unimodal.

Proof: We have my(p) < m(p) = - - + = m,; (p) by the preceding discussion
and the fact that the map ¢, of (11) commutes with the action of G and is injective for
0 < k= L(n — 1)/2]. Symmetry follows as in Theorem 10; the actions of G on (}') and
(,*,) are isomorphic, so m, (k) = m,(n — k). O

An application of Theorem 12 of great combinatorial significance arises from
letting M = {1/, 2, ..., n'} and G = Z,, as in the previous exercise. The irreducible
representations of £, are indexed by partitions X of n. Let 5,(x) = 5,(x,, X3, . - .) be the
Schur function indexed by A, as defined, for example, in {70, 98]. We merely state
without proof the following result, whose proof involves knowledge of the representa-
tion theory of Z,. See [61, Satz 7.2.2). A proof can also be given using the
representation theory of the Lie algebra s/(2, C) and goes back to Dynkin, as discussed
in the next section (Example 2).

THEOREM 13: Let M = {1/, 2, . .., r'} and G = Z, as before. Let m,(\) denote the
multiplicity of the irreducible representation of =, corresponding te X in the action of X,
on (). Then

ka()\)qk - Sk(l, 4, qz' BRI q.'-l).

k=0
Hence the polynomial 5,(1, ¢, 4% .. ., ¢~} is symmetric and unimodal.

The polynomial 5,(1, ¢, ¢°, ..., ¢'") can be explicitly evaluated, and also has a
combinatorial interpretation. Namely, the coefficient m,(A) of g* in s(l, ¢,
g% ....q" ") is the number of column-strict plane partitions (as defined, e.g., in [70,
98Y) of & of shape A and parts chosen from 0, [, ..., [ — 1. Moreover

1 — clx}
PN A ) L H qm}‘
XE:L
where
AN =20 — DA =2, an

and where if x = (7, j) with 1 =i <Ajand | <j <X, then c(x) = j — i (the content of x)
and A(x) =X, + N} — i — j + | (the hook-length of x). Here A = (A;, Ay, .. Jand A" =
(A%, A% .. ) (the conjugate partition to A}. See [70, p. 48] and [98, theorem 15.3] for
further details.

A special case of Theorem 13 is of particular interest. Let A = ("), the partition
with r parts equal to ¢. {The diagram of A is a rectangle with » rows and ¢ columps.) It is
easily seen from the preceding combinatoria) description of m, (\) in terms of plane
partitions that

—d ()

cril
sil,q. ¢ ...,g" ") = Z Jule x t x t)gt,
k=0
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where f,(¢ x r x t) is the number of k-element order ideals of ¢ x r x t. Hence we
obtain the following corollary.

COROLLARY 3: For any positive integers ¢, r, t, the sequence
Jole xrxt)jilexrxt), ..., julexrxt)
is symmetric and unimodal.

Corollary 3 (and the special case Theorem 11) naturally suggest the following

conjecture, whichisopenevenform =4orforr=rp=. .. =r, =12
CONJECTURE 5: For any positive integers ry, ry, . ... Fy write ji = j(rp x rp % - -
x tg)and r = riry - - - r,. Then the sequence jo, j,, . - . , J, is unimodal. (The sequence

is ¢learly symmetric,)

Now let G be any subgroup of , and let #: G — C be any complex-valued function
of G. Suppose m & G has ¢{m) cycles of length i (so I; ic;{(w) = n). Define the
generalized cycle index polynomial of G with respect to o by

l o X
C)’C(G, 0‘) = |—G'-I Z 0’(11'_1) I I x,"( ).
=0 i

If f{g) is any polynomial in g, then define the Pélya composition Cye(G. o) [ f{g)] of
Cyc((, o) with f(g) to be the polynomial obtained by substituting f(g') for x; in
Cye{G, o), that 1s,

Cyc(G. 0} [ (@)} = Cye(G, o) (x;— f(g')).

in particular, it follows from the theory of Schur functions that

Cye(Z,, xM +g+ - - +41=5(l,4....¢

where x* denotes the irreducible character of 3, corresponding to the partition X. The
foliowing result is not difficult to deduce from Theorem 13. It was first proved by A.
Kerber {61, sec. 7.2.3] and also appears in [110, corollary 3.3].

THEOREM 14: Let G be a subgroup of Z,, x an ordinary character of G (i.e., the
character of a complex linear representation of G), and f(g) a polynomial with
nonnegative integral unimodal coefficients, satisfying g'f(1/g) = f{(g). Let

Fiq) = Cyc(G, x) [ f(g)])-
Then F(g) has nonnegative integral unimodal coefficients, and g"F(1/q) = F(g).

As noted in [110, p. 268], the assumption that the coefficients of f(g) are integers is
essential for (g} to be unimodal. For instance fwriting Cyc(G) for Cye(G, 1) when ¢ is
the trivial character],

Cyc(ZHI'h + %q) = (3 + 2¢ + 347).

We can ask whether there are other examples of LAP of combinatorial interest
besides those arising from Proposition 8. We state one very special result of this nature
(103, propaosition 9.11].
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PROPOSITION 1}: Let n be a positive integer. Then the two polynomials
P+ 0+ + @M1+ - (1 +4"h,
M -U+U+¢)1+g%) - - (1L +47"

are symemetric and unimodal.

Idea of proof: Choose Sy to be the set J,(n % n) of k-clement order ideals of n x n.
Define ¢k:CSk - CS;H_] by

oll)= 2 I ICS,.

Let & be the cyclic group of order 2, acting on S, in the abvious way. The difficult part
of the proof is to show that ¢, is injective for 0 < k =< [(#® — 1)/21 . This being done,
the proof follows from (16) by a straightforward computation. O

A further connection between linear algebra and unimodality is provided by the
theory of assaciation schemes. We will not enter into this theory here, but refer the
reader to [8, pp. 205 and 374-376] for the details.

REPRESENTATIONS OF s/(2, ©)

The Lie algebra s{(2) = sl(2,C) is defined to be the set of ali complex 2 x 2
matrices of trace 0, with the binary operation [4, 8] — AR — BA. Thus si(2) is a
vector space over £ of dimension three. The representation theory of /{2, C) is 2
powerful toot for proving unimodality of certain sequences (which will always be
symmetric). We first review the basic facts about s/(2) (see, e.g., [58, sec. 7]).

Let gl(n) = gf(n, C) denote the Lie algebra of all complex # x n matrices (with the
operation {4, B8] = AB — BA). A (finite-dimensional, complex, linear) representation
of s/{2) of degree n is a Lie algebra homomorphism ¢:s/(2) — gl(#} (so y[A4, B] =
[¥A, ¥:B1). Let A denote the matrix

1 0
h = (0 3 l) & si(2).

The eigenvalues of the n x r matrix Yk are integers, say e, &,, . .., e, Define the
character of ¢ to be the Laurent polynomiat

chary = f:q’*. {18)
i-l

We may identify g/{n) with the set End ¥ of linear endomorphisms of ¥ (i.e., linear
transformations ¥ — V), for some n-dimensional complex vector space V. We may
then think of the representation  as defining an action of sI(2) on ¥, that is, if 4 &
s{(2) and v € V, then 4 - v = Y(A)v). The representation ¢ is irreducible if ¥
contains no proper s/(2)-invariant subspace. Every representation ¢ is completely
reducible, that is, we can write ¥V = V @ V, @ . . . @ V,, where each V,is an
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irreducible invariant subspace. Thus ¢ =¢; @ .+ - - @ ¢ and
chary = char, + - - - + chary;

where , denotes the action of 5/(2) on V restricted to ¥,. Two representations v,
¥,:51(2) — gl(n) are equivalent if there cxists a nonsingular 7 x n matrix X for
which

¥r(d) = X ()X, forall 4 € si(2).

We then have that for each j = 0, s/(2) has exactly one irreducible representation (up
to equivalence)

psl(2) —~ gl(j+ 1)
of degree j + 1. Moreover,
charp; =g/ + g+ g7+ ... + ¢, (19}
From these basic facts there follows the next theorem.
THEOREM 15: Let y:5/(2) — gl(n) be a representation of s/(2) with

chary = T byq'. (20
Then the two sequences
oo b g B, by B by,
U SR ST MO TR 21
are symmetric (i.e., b; = b_;) and unimodal.
Proof: Let m; be the multiplicity of ¢; in y, so
char§ = Z my(char p,)

=ZmgF+ g7+ - -+ g0). (22)

Clearly from (19) char ¢ is symmetric. Moreover, comparing (20) and {22) yields m;, =
b — b;,,, { = 0. Since m; = 0, the proof follows. [

REMARK: Let x = [35] € sI(2). Given :5I(2) — End V, let V' be the eigenspace
of (k) corresponding to the eigenvalue i, so if char = = b,g', then b, = dim V', (V' is
called a weight space.) Then x - V' {C V™? and x is injective for i < 0. Hence, the
graded vector spaces ¥ = 1 F¥ and V = 11 V¥*" and linear transformation x {(acting
on V') provide an example of LAP (Variation 2). Many of the examples of LAP in the
previous section turn out to coincide precisely with an s/{2) representation after a
suitable choice of basis. See, for instance, [83].

We know of two main applications of Theorem 15, the second of which is the
subject of the following section. For the first, let § be any finite-dimensional complex
semisimple Lie algebra. Then € contains a certain subalgebra (unique up to conjuga-
tion) isomorphic to s{(2), known as a principal three-dimensional subalgebra (see
[64]). Now let ¥:8 — gf(n) be an irreducible representation. We can compose the
inclusion s/(2) T ¢ with ¢ to get a representation visl(2) — gl(n). The character of
Y was essentially first computed by Dynkin [36], [37, p. 332]. In particular, char ¢ is
either an odd or an even polynomial in g, 50 one of the sequences (2}) is trivial. A simple
description of char ¥ in terms of root systems was given in [101]. (An alternative
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description of char § for the root systems B,, C,, D, is implicit in [39], though only the
case ¢ = 1 is treated explicitly.) We will simply state the result here. The reader
unfamiliar with root systems may think of a root system as a finite set R of vectorsina
real vector space V satisfying certain axioms. See, for example, [15] or [58] for further
information on root systems.

Let B = {a,, ..., a,} be a base for the root system R of rank . Then R decomposes
as a disjoint ynion R = R, | R_ of positive and negative roots. Every vector § & R,
can be writtent uniquely in the form

L3
8- Z iy,
jal

where ¢; is a nonnegative integer. Moreover, 3 & R, ifand only if -8 & R_. Let us
write x¥ = x{' - . . x{*, and define the potynomial

Prlxy,o...x) = 2 (1 — X%,

8cR,

THEOREM 16: Let R be a root system of rank #. and let m,, . . ., m, be any positive
integers. Define

_ Palg™ g™ ... q™)
PR(Q’,Q,---,Q)

Qg(ml, Flye ooy m”)

Then Qg(m,, . . ., m1,) is a symmetric unimodal polynomial in the variable g with
nonnegative integer coefficients and constant term 1.

ExAMPLE 2: Choose R to be the root system A4,. Then, with a suitable ordering of
the base,

—d(A}

Orlmi,....m) = ¢ W5 (1,q,....9""),

where A is the partition with A, — A, = n7;, d()) is given by (17), and s, is as in
Theorem 13. Hence we have a second proof of Theorem 13, essentially the proof in
{110, theorem 3.1} arnd [70, p. 67].

EXaMPLE 3: Choose R = C,. Then, with a suitable ordering of the base,
QCil 1. L) =+ U +¢) - - (I + ¢ (23)

It is remarkable that there is no simple proof (e.g.. similar to our proof of Theorem 11)
of the unimodatity of this polynomial. Hughes {57] was the first to realize the relevance
of Dynkin's urimodality result to combinatorics and to observe that (23} is a special
case. Proctor {84] gives, among other things, a version of Dynkin's proof of the
unimodality of (23) that avoids explicit mention of Lie algebras, Recalt also that in the
fourth section we mentioned the analytic proof of Qdlyzko—Richmond of the unimodal-
ity of (23). The poiynomial @{C,; 1,1,...,1,m) for any m = [ also has special
combinatorial significance; see [ 101, example 3].

REMARK (for readers familiar with Lie algebras): The representation ¢:8 — g/ (27
corresponding to (23) is the spin representation of so(2n + 1, €). Note that so(2n + 1,
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) is of type B,, but we chose R = C,. This is because the root system R appearing in
Theorem 16 turns out to be the dual of the root system corresponding to §.

ExaMPLE 4: Choose R = B,. Then, with a suitable ordering of the base,

2n+2} [2]{n + 1]

QB:2. 1, L1 = n+1 | [n+ 2]{2n + 2]

= Bppy (Q)s say,

where we use the notation of (2) and (3). Hence K,{1) is equal to the Catalan number

1 2
K,,=K,,(1)=—( ”J,
n+1lin

and K,(g) provides a symmetric, unimodal “g-analog” of degree n’. The most natural
g-analog of K is

2n| [1]

nlln+1]"

but this polynemial is not unimodal. The coefficient of ¢* in K, (g) has the following
combinatorial interpretation: it is the number of increasing integer sequences §; <
sy - - < s,satisfying: (a)2i — 1 <5, < 2mand (b)Y k=% (W’ + f(s)) + - -+ +
f(s,)), where

s =1, 5 even

f(s) =l
-5, s odd.

Is there a simpler interpretation of this coefficient?

An interesting variation of Theorem 16 arises when we replace Lie algebras with
Lie superalgebras. We will say only a brief word about it here, referring the reader to
[110] for more details. Lie superalgebras are generalizations of Lie algebras, and much
of the preceding theory has a “superanalog.” The analog of s/(2) turns out to be a
certain five-dimensional superalgebra denoted osp(1, 2). The superalgebra osp(1, 2)
has one irreducible representation g, j = 0, of every odd degree 2/ + 1, and

Charp; = q_.-' + q-j"'i + q—j+2 o+ q)

Any (finite-dimensional) representation ¥ of osp(1, 2) has a character char y = = b,g'
satisfying (a) b; = b_,, and (b) char ¢ is unimodal. {We no longer need to consider even
and odd exponents separately as in (21). The theory of superalgebras “unifies” the two
sequences (21) into one, analogous to the way the theory of supersymmetry in physics
unifies bosons (particles of integral spin) and fermions (half-integral spin). Our aims
are not quite as lofty as those of physicists, however; physicists want to unify the laws of
nature, while we wish to show that certain sequences are unimedal.)

We no longer have as rich a class of examples as in Theorem 16 (see [125] and
[126] for more details), but there does turn out to be a superanalog of Example 2. The
Schur function s, (x) is replaced by the “super-Schur function” s, (x/y) (also cailed a
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“hook Schur function” and denoted HS5,(x, y}), as defined in [11] or [110]. Theorem
13 becomes the resuit that the polynomials

2«—[)

s(L.é....¢e.q. . ...q

are symmetric and unimodal. In particular, we get the following superanalog of the
g-binomial coefficients by taking X to consist of the single part j or of j parts all equal to
1. A. Odlyzko has informed me that the techniques of [78] can in principle also be used
to prove Theerem 17, but the details have not been worked out.

THEOREM 17: Define polynomials P, (g) and P, (g) by

S L@+ gy -+ ¢
N T T ST

(O + 0t +¢%---( + 47
' i .
;azup’"(q“ (1 —g(l —gty-. (1 —-g" ")

Then P,(g) and Pj,{g) are symmetric and unimodal.

The coefficient of ¢* in P, (g) is the number of partitions of k into at most j parts
all = 2a, and with no repeated odd part. If we think of even parts as “bosons™ and odd
paris as *“fermions™ (the “spin™ of a part p being p/2, or more accurately, { p/2) - n),
then the condition that no odd part is repeated is just the Pauli exciusion principle,
which applies to fermions but not bosons.

THE HARD LEFSCHETZ THEOREM

Our second main application of Theorem 15 arises from algebraic geometry. The
fundamental underlying algebraic result is that s/(2) acts in a nice way on the
cohomology ring A*(X, C) of certain algebraic varieties X. Classicaily, X is an
irreducible smooth complex projective variety. A much richer class of examples is
obtained by replacing the condition that X is smooth by the condition that the
singularities of X are not too badly behaved. Namely, we assume X is a {complex)
V-variety, that is, locally X looks like affine space C* modulo the action of a finite
group G of linear transformations. (The group G depends ¢n the point p & X under
consideration; if & is trivial, then X is smooth at p.)

Thus let X be an irreducible complex projective V-variety of (complex) dimension
n. Then X has associated with it its (singular) cohomology ring (over C, say), denoted
H*(X) = H*(X, C). H*(X) has the structure

H¥*{X)=H' XY D H'(X)® - . . ® H"™(X)

of a finite-dimensional graded C-algebra, so that each H'(X) is a finite-dimensional
vector space, and A (X)H/(X) C H™(X). Set 8,(X) = dim H'(X), the ith Betti
number of X. Since X is projective, we can embed it in a complex projective space

Let K be a generic hyperplane in P". By a standard construction in algebraic geometry,
the closed subvariety K (M X of X defines an element @ & H*(X). Multiplication by
is 2 linear transformation on H ¥ (X) sending H'(X) t0 H***(X). Define another linear
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transformation 7 on H*{X) by n(x) = (i — #)x if x & H(X). One can then define a
scalar product on H*(X) with the following property: if w* denotes the adjoint to
multiplication by w, then the map y:s/(2) — End A*(X) given by

0o 1y tooy o o)
o o] % lo 1] ™ 1 0] %

is a Lie algebra homomorphism [i.e., a representation of s/(2}]. Comparing with our
definition (18) of char ¢, we get

In
chary — g3 B{(X)d.

=l
Hence from Theorem 15 we obtain the following theorem.

THEOREM 18: Let X be an n-dimensional irreducible complex projective V-variety
with Betti numbers 8; = 8:(.X). Then the two sequences

60,,82,‘ - !B}_n
Bls ﬁ]s L 9ﬂ2n-1

are symmetric and unimodal.

A consequence of the representation ¢ is that for 0 < i =< n, the map «" > H'(X) —
H*™ '(X) (defined as multiplication by w") is a bijection. This result is known as the
hard Lefschetz theorem and is sufficient to deduce Theorem 18. The hard Lefschetz
theorem and its consequence Theorem 18 were first given for smooth varieties by
Lefschetz, but his proof was not complete. The first rigorous proof was given by Hodge
using his theory of harmonic integrals, while the connection with s/(2) is due to Chern.
The extension of the hard Lefscheiz theorem to V-varieties was published by
Steenbrink, but his proof was incorrect for n > 2. A correct proof was given by Saito
[90] using deep results from the theory of perverse sheafs (see also [74]). For further
historical information and references, see [108}. Note too that the hard Lefschetz
theorem applied to H*{X) may be regarded as an example of LAP{(H°(X), H*.
(X), ..., H"(X)),and LAP(H'(X), H*(X}, ..., H™ (X)) (Variation 1).

If we take X to be the Grassmann variety G,,,,,(C) of all I-dimensional linear
subspaces of C'*™, then Theorem 18 reduces to Theorem 11. Similarly, if we take X =
SO(2n + 1, C)/P for a certain maximal parabolic subgroup P, then we obtain the
unimedality of {23}. More generally, if G is any complex connected semisimple Lie
group and P any parabolic subgroup, then we can apply Theorem 18 to the quotient
space (“‘generalized flag manifold™) X = G/P. We then obtain the following result (see
[102] for further details, precise definitions, etc.).

THEOREM 19: Let W be a (finite) Weyl group with simple reflections S, and let J
S. Let W, be the subgroup of W generated by J, and let W be the set of minimal length
{with respect to the usual length function / on W) coset representatives of W,. Then the
polynomial

FW.,q)- 3 4% (24)

wie B
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is symmetric and unimadal. Explicitly, we have

IHHa+g+¢+- - +9»
F(WJ'JQ): 1

k

IHa+g+a+---+eh
I

wheree,, .. ., e, are the exponents of Wand £, . . ., f, the exponents of W,. (Hence by
Proposition 1, the unimodality of (24} in general follows from the special case #(S —
Jy=1)

The varieties (/P underlying Theorem 19 are smooth. For an application of
Theorem 18 when X is a nonsmooth V-variety, take ¥ to be a product

Y=P"xP™mx...xP™

of complex projective spaces P™, and let G be a group of permutations of r that acts on
Y by permuting coordinates. If we let X be the quotient variety Y/G, then X is 2
V-variety and Theorem 18 reduces to Theorem 10.

We now give a more substantial application of Theorem 18 for which the varieties
X are nensmooth V-varieties. Let P be a simplicial d-polyrope, that is, a d-dimensional
convex polytope for which every praper face is a simplex. (See [52] or [73] for basic
information on convex polytapes.} Let f; = £,(?) denote the number of i-dimensicnal
facesof P,0<i=d —~ 1.Setf_, = | (corresponding to regarding the empty set as a
face of dimension —1). Call the vector f(P) = (f5, fiu - - - » fa_1) the f-vecror of P.
Define the numbers #q, by, . .., 2y by

d 4
D ohxi =Y i (x — 1 (25)
=0 i={

Clearly knowing the f; is equivalent to knowing the A;. The vector A{P) = (hg, Ay, .« - -
h4) is called the h-vector of P. The Dehn-Sommerville equations {e.g., [52, secs. 9.2
and 9.8] and [73, secs. 2.4 and 5.1] assert that #(®) is symmetric, that is, &, = h, .. In
1970 McMullen and Walkup conjectured that 4(?) is unimodal. This conjecture is
known as the generalized lower bound conjecture (GLBC), because it generalizes an
earlier conjecture (subsequently proved by D. Barnette) that gives the least possible
value of f; when f; (the number of vertices) and 4 (the dimension) are specified. (The
GLBC also included a condition as to when A; = &;_,. This part of the GLBC remains
apen.)

THEOREM 20: The GLBC for simplicial d-polytopes P is valid, that is, the A-vector
h{P) is unimodal (and symmetric).

Sketch of proof: Without loss of generality we may assume (a) 2 C R?, (b) the
origin of R lies in the interior of P, and (because P is simplicial) (c) the vertices of P
have rational coordinates. Under these circumstances we can associate an irreducible
complex variety X(P) of dimension d, called a toric variety, first defined by
Demazure. (The varieties X(?P) are special cases of the general notion of toric
varieties.) The convexity of ® implies that X (%) is projective (a result of Demazure),
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while the simplicial property implies the {much easier) result that X{#) is a V-variety.
Finally, Danilov and Jurciewicz computed the Betti numbers of X(P), namely,

BulX(P)) = hi(P),
Brin (X(P) = 0. (26)
The GLBC then follows immediately from Theorem 18. [

For further details and references concerning Theorem 20, see [107]. In particular,
a more detailed analysis of the cohomology ring H*(X(P)) yields a complete
characterization (known as McMullen's g-conjecture) of the k-vectors of simplicial
polytopes. There are a number of open problems related to Theorem 20. From the
viewpoint of unimodality, the most significant one is as follows. Let A be an abstract
simplicial complex that triangulates the (d — 1)-sphere $%'. (More generally, A could
be a (d — 1)-dimensional nonacychic Gorenstein complex, as discussed, e.g., in [106,
112].) We can define f; and h; exactly as we did for simplicial polytopes, and one still
kas h; = hy_s

CONJECTURE 6: The sequence hy, k. . . ., iy just defined is unimodal.

A recent development in topology, namely, the development [47, 48] of intersection
(coyhomology by Goresky and MacPherson, allows Theorem 18 to be further
extended. With any irreducible complex projective variety of dimension &, we can
associate a graded vector space (over C, say),

TH*(X) = IH" X)) @ IH' (X)) @ . . - @ [H¥(X),

called the middle intersection cohomology of X, which in general is more nicely
behaved than singular cohomology H*(X). In particular [10, theorem 5.4.107;

THEOREM 21: Let X be an irreducible complex projective variety of dimension 4,
and set

B, = BAX) = dim IH'(X).
Then the two sequences
BonBry - Baa
BB B,

are symmetric and unimodal.

For instance, Lusztig [69] defines varieties for which Theorem 21 reduces to
Theorem 16. For an application of Theorem 21 that wasn't previously known, let ? and
@ be arbitrary (i.e., not necessarily simplicial) convex polytopes. We say that ? and @
are combinatorially equivalent if they have isomorphic face-lattices, that is, if there is
a one-to-one correspondence between their faces that preserves inclusion. A polytope P
is rational if it is combinatorially equivalent to a polytope whose vertices have rational
coordinates. Although simplicial polytopes are rational, it was first shown by M. Perles
that nonrational polytopes do exist (se¢ [52, sec. 5.5.6]). Now suppose P is a
d-dimensional polytope, embedded in R so its vertices have rational coordinates and
the grigin is in its interior. Then we can still define the toric variety X (%), which is a
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d-dimensional irreducible complex projective variety. However, unless 2 is simplicial,
X{P) will not be a V-variety, so Theorem 20 is invalid. In fact, if we insist upon
defining the h-vector by (25), then even the Dehn—-Sommervilie equations 4, = k,_; will
fail. We should instead define

he = By (X(P)) = dim IHH#(X(P)).

(It can be shown that ﬁzi“ {(X(?)}) = 0.] Theorem 21 then guarantees that the sequence
AP} = (ho, hy, . - ., hy) is symmetric and unimodal. An obvious question remains: How
do we compute 2{?) in terms of the structure of #7 This computation was carried out
independently by Bernstein, Khovanskii, MacPherson, and perhaps others. The
description of A(#) no longer depends only on the f~vector f{?), but rather is given
inductively in terms of & (@) for proper faces @ of P. At least it is still true that A{P)
depends only on the combinatorial type of 2, and not on the embedding into R?. The
combinatorial definition of A(#) makes sense even if ? is not rational, but in this case
it is not even known whether A; = 0. (It is still true, nonetheless, that A, = k,_;.) We
refer the reader to [112] for the definition and basic properties of A{®), as well as a
host of open problems and conjectures.

Algebraic geometers have computed the Betti numbers and middle intersection
Betti numbers for many other classes of algebraic varieties. We have not systemati-
cally investigated these results, but certainly we expect some to be of combinatorial
interest. In particular, an intriguing generalization of Eulerian numbers arises in this
way in [31] and [32]. For a further example, see [30].

Let us now consider an interesting variation of the preceding theory that arises
when we have a group & (which we may assume is finite) acting on a compiex
projective variety X. In that case, as pointed out to me by S. Kleiman, there is 2
projective embedding X (C [PV such that multiplication by a hyperplane section w
commutes with the action of G. It follows from {16) and Theorem 138 that if X satisfies
the hard Lefschetz theorem and p is an irreducible character of G, then the two
sequences

Bﬂ{p)v 162(9)s LR Iﬁln(p)
Bilp), Bs€o).. . ., Bra_1 (0)

are symmetric and unimaodal, where 8;(p) denotes the multiplicity of the irreducible
representation p in the G-module H(X). Let us mention two combinatorial applica-
tions.

27

THEOREM 22: Let P be 2 centrally symmetric (i.e, if x € P, then —x € P)
simplicial d-polytope, with A-vector (%, A, . . ., 4,). Then the sequence

ot

is unimodal (and symmetric). in particular (since ky — 1), we have &, = (4).

Sketch of Proof: We can assume P satisfies conditions (a)-(c) in the proof of
Theorem 20, so that the toric variety X(P) is defined. In that case, the group G =
Z{2Z acts on P and therefore on X{P) and H*(X(P)). Let p be the nontrivial
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irreducible representation of G. One can compute that 8,,(p) = "4 (h, — (), and the
proof follows from the unimodality of 27). O

Theorem 22 settles a conjecture of Bjdrner {unpublished) that generalizes a
conjecture of Bardny-Lovasz [9, pp. 325-326]. Further details appear in [114].

For our second application, we assume familiarity with the theory of symmetric
functions [70].

PROPOSITION 12: For each partition A of 4 nonnegative integer, define a polynomial
Py{q) by

Zsk
Y Pigs, = ,
* l—gy (1+g+---+ds,

k=2

where s, and s, denote Schur functions. If A + # (i.e., Z X; = n), then P, (g) is symmetric
about ¥:(n — 1) (i.e., " 'P,(1/q) = P,(q)) and is unimodal.

Sketch of Proof: Here we choose P to be essentially the Coxeter complex of the
symmetric group and G to be .. Take p to be the irreducible representation of Z,
corresponding to the partition A of n. The proof follows from the unimodality of (27)
and a computation of deConcini-Procesi (unpublished). 0O

An elementary proof of Proposition 12 has subsequent]y been given by F. Brenti
[171.

If f* denotes the number of standard Young tableaux of shape A [70, p. 5], then it is
not hard to show that

2 SPA(@) - 7' 4,9, (28)
where 4,{g) denotes an Eulerian polynomial {see Eq. (6)]. Hence Proposition 12,
together with (28), provides a refinement of the unimodality of 4,{(g). It would be
interesting to give a combinatorial interpretation of the coefficients of P,(g). Along
these lines, let us mention that if A is the hook shape (n + I — /, 1'), then it can be
shown that

n—|

P[u-a-l—f.l’)(q) = (n—-Zl

)q’(l + g
The following variation of Proposition 12 was conjectured by this writer and proved
by F. Brenti [17], as part of a more general result that also includes Proposition 12.
PROPOSITION 13: For each partition X, define a polynomial R, {(q) by
1
1—-g) 0+g+--- + s

k=2

Z’; R {(q)s, —

Then R,(g) is unimodal. [1t is easy to show that if A 1 », then ¢"R,(1/g) = R, (g).]
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It can be shown that if
> FRAg) = 2 du (e,
Arn J

then d,{ j) is equal to the number of permutations = — a\a, - - - a, & Z, satisfying:

(a) a, # iforalli(i.e., wis a derangement),
(b) j— #lia, > ib.

There is a further “refinement by partitions” of 4,(¢) (whose significance will not
be explained here) that this writer conjectured had unimodal parts and that was proved
by Brenti [16].

ProPOSITION 14: For each partition A define polynomials T, (¢) by

1
L—g) (1—g)'s,
m=1

; T{qg)s, =

Then the polynomials T, (g) have real zeros. {They are easily seen to satisfy

quTa(l/‘?) = Tviq)

S AT(g) = Aug))

Ak

A FINAL WORD OF WARNING

Lest the reader think that every “reasonable™ sequence turns out to be unimodal,
let us mention an exception. In the late 1950s Motzkin (and later independently
Welsh) conjectured that the f~vector f(P) = (fo, - - ., fa_,) {as defined in the fast
section} of any convex polytope ? is unimodal. This conjecture was disproved by
Bjdrner [12], who showed that there exists a 24-dimensional simplicial convex polytope
with 2.6 x 10" vertices, such that f,, > fis < fi! (This was subsequently improved
independently by Bjdrner and Lee to a 20-dimensional simplicial polytope with around
4.2 x 10" vertices with f, > £, < fi3.)

For a further example of a nonunimodal sequence, see {115].

NOTE ADDED IN PROOF: (1) A nice combinatorial interpretation of the ¢g-Caialan
numbers X, (q) of Example 4 appears in J. Fiirlinger and J. Hofbauer. 1985. g-Catalan
numbers. J. Comb. Theory A 40: 248264 (the case A = 0).

(2) A combinatorial interpretation of the coefficients of the polynomial P,(g) of
Eq. (28) has been given by J. R. Stembridge, Eulerian numbers, tableaux, and the Betti
numbers of a toric variety. Preprint dated May 1989.
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