VARIATIONS ON DIFFERENTIAL POSETS*

RICHARD P. STANLEY+{

1. Introduction. Differential posets were introduced in {Sta;]. They are
partially ordered sets with many remarkable algebraic and combinatorial properties.
In this paper we will consider ways to modify or extend the definition of differential
posets and still retain some of their basic properties. This paper is essentielly
a sequel to [Stag], and familiarity with [Staz] will be useful but not essential for
understanding this paper. In particular, if P is a poset and K a field, then KP
denotes the K-vector space with basis P, while KP denotes the K-vector space of
arbitrary {i.e., infinite) linear combinations of elements of P. If P is locally finite
and z € P, then define

CH(z)={y € Py covers z},
C (z2) ={y € P:z covers y}.

Furthermore, define continuous (i.e., infinite linear combinations are preserved) lin-
ear transformations U/, D : KP — KP by

Uz = Z y, Dz= Z Y,

yECH(z) yeEC~(z)

for all z € P. If § C P then we write

S= ZIE}?P
I€ES

If P is r-differential then we have

1) DU -UD=rI,

(2) DP = (U +1)P.

(See Theorems 2.2 and 2.3 of [Stay].) We will consider three main variations of
differential posets, all involving either modifications of the definition of I/ and I? or
modifications of equations (1) and (2).
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2. Sequentially differential posets. Let r = (rp,r1,...) be an infinite se-
quence of integers.

2.1 Definition. A poset P is called r-differential if it satisfies the following three
conditions:

(81) P is locally finite and graded, and has a ( element.

(S2) If z # y in P and there are exactly k elements of P which are covered by
both z and y, then there are exactly k elements of P which cover both z and y.

(83) If z € P; and z covers exactly k elements of P, then z is covered by exactly
k + r; elements of P. (Here P; denotes the set of elements of P of rank 1.)

If P is an r-differential poset for some sequence r, then we call P a sequentially
differential poset. []

Properties (S1) and (S2) coincide with {D1) and (D2) of [Stas, Def. 1.1}, while
(53) is a weakening of {D3). Thus Proposition 1.2 of [Stas] remains true for se-
quentially differential posets, i.e., the integer & of ($2) must be ) or 1. (Thus given
(S1), condition (S2) coincides with what Proctor calls uniguely modular [Py, p.
270].} Moreover, the next three results are proved in exactly the same way as the
corresponding results of {Stay] {viz., Proposition 1.3 and Theorems 2.2 and 2.3).

2.2 PROPOSITION. Let L be a lattice satisfying (51} and (S3). Then L is r-
differential if and only if L is modular. []

As in [Stas), if A: KP — KP is a linear transformation then A; denotes the
restriction of 4 to K P;; and we can unambiguously use notation such as ABj, since
A(Bj) and (AB); have the same meaning. In particular I; denotes the identity
transformation [ : KP — K P restricted to KP;. We often omit subscripts if they
are clear from context, e.g., in equation (18) it is clear that /D’ means U‘D{.

2.3 PROPOSITION. Let P be a locally finite graded poset with 0, with finitely
many elements of each rank. Let v = (rg,m1,...) be a sequence of integers. The
following two conditions are equivalent:

{a) P is r—differential,

3
@ (6 DUy -UD;=r;I;, forallj>0. 0

If P is finite in Proposition 2.3 and if j is greater than the rank of P (so that
P; = @}, then (b) is regarded as vacuously true {whatever the value of r;). For
instance, a single point is r-differential for any sequence r with ry = 0.

2.4 PROPOSITION. If P is an r-differential poset, then
{4) D_f+1Pj+1 = U_,'-]Pj_l +r;P;. 0

Before discussing properties of r-differential posets, let us list some finite exarm-
ples.

2.5 Example. The following finite posets are r-differential:
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(2) An n-element chain (ro = 1,r;=0for 1 <i<n—2r,; =-1).

(b} The boolean algebra B, of rank n (r; =n —2:, 0 <i < n).

(c) A product C§ of n 3-element chains Cs (ri =n —1, 0 <1 < 2n).

(d) The lattice L.(q) of subspaces of an n-dimensional vector space over the
finite fleld Fy (ri=1+¢g+ - +¢" "' —(1+¢g+---+¢ 1), 0<i<n)

{e) I P is r-differential and finite of rank n (in which case it must have a 1) and
Q is s-differential, then the poset P * ¢} obtained by identifying fePwithleq@
8 (ro,- .- »Tn—1,r + 30,51, 57, ... )-differential.

(f) H P is r-differential and finite of rank n, then the dual P* is (—r,, —rp_1,-..,
—rg )-differential.

There are many other finite r-differential posets, and it is probably hopeless
to attempt to classify them all. It may be more traciable to find the finite r-
differential distributive lattices L = J(P) (where J{P) has the meaning of [Sta,,
Thm. 3.4.1]}. Example 2.5(b,c, e} gives some examples. A further class of finite r-
differential distributive lattice may be constructed as follows. Suppose P and ¢} are
finite posets of cardinalities m and n, respectively, such that J(P) is r-differential
for r = (ro,...,7m) and J(Q) is s-differential for s = (s5,...,5,). Suppose also
that vy = 8o = t, say; and let M = {z1,...,2:} be the set of maximal elements
of Pand N = {y;,...,¥%:} the set of minimal elements of Q. Define a new poset
P#Q on the disjoint union P + @ by imposing the additional relations z; < y;
whenever ¢ # j (and all relations then implied by transitivity). Then J(P#@Q) is
{ros--s™m—2:Tm-1 + 1,0,81 — 1,82,..., 8, )-differential. If we take P and Q to be
2-element antichains, then J{(P#@Q) = C3 x Ca, where Cs denotes a 3-element chain.
If we take P = @ = By (the boolean algebra of rank 3), then J(P#Q) = FD(3),
the free distributive lattice on 3 generators [Stas, Exer. 3.24].

In general, one sees as in [Stas, Prop. 5.5] that for fixed r there is at most one r-
differential distributive lattice L(r) {up to isomorphism). It is probably hopeless to
determine for which r the lattice L(r) exists; if the sequence rg,r1,72,... increases
“sufficiently fast” then L(r) exists, but it seems difficult to describe the necessary
rate of growth precisely. Conceivably there are no other finite r-differential dis-
tributive lattices besides those described above. A straightforward generalization
of the construction of [Staz, Prop. 6.1] shows that if all r; > 0, then there exists an
r-differential {modular) lattice.

Let us turn to the enumerative properties of sequentially differential posets. The
basic principle here is that all the enumerative results of {Stag] can be extended to
r-differential posets, but their statements no longer involve generating functions
and thus become more complicated. Consider, for instance, the number a(0 — n)
of saturated chains from 0 to P,. According to [Stas, eqn. (12)], in an r-differential
poset we have

¢ 1,
Z a(0 = n)— = exp(rt + -rt*).
s n! 2
Fquivalently,

(®) a0 - n) = ),

ur
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where w ranges over all involutions in $, and c{w) is the number of cycles of w.
For r-differential posets, the term (¥} in (5) is replaced by a certain monomial
ro'rit ... (where 3 ¢ = c{w)), as follows:

2.1 THEOREM. Let P be an r-differential poset. Then
(6) 0(0 — n) = Z Hrﬂ(‘”-m)’
w m

where (@) w ranges over all involutions wiwg---w, in S, {b) m ranges over all
weak excedances of w (i.e., wy, > m), and (c) n(w,m) is the number of integers j

satisfying j < m and w; < wp.

For example, when n = 3 we have the following table, where the positions of
the weak excedances are underlined:

involution w values of p{w, m)
123 0,1,2
213 0,2
132 0,1
321 0,0

Hence a0 — 3) = r} + ror; + rory + rorira. Let us note that the number of weak
excedances of an involution w is equal to c(w), so that Theorem 2.1 reduces to (5}
when each r; = r.

Proof of Theorem 2.1. Consider the element
D*Pipy = Dig 1 Digr -+ Diga P

of K'P;. It is evident that repeated uses of Propositions 2.3 and 2.4 will express this
element as a linear combination of elements of the form I77P;_;. For instance,

D?*Piig = D(UP; + ri41Pipr)
= (U.D + ri)Pi + rig1(UPi—y + miPy)
=U(UPia+riaPia) + ripiUPi + (1 4+ i )P
=U?Pi_z + (ricy + 7i41)UP1 + ri{l +ri1)Pi.

We claim that in general,

k

(7) Dkpi+k = Z ZHri+q(w,m)—U(w,m) UjPi-'.i’

=0

where (a) for j fixed, w runs over all involutions in S with j of the fixed points
in w circled (so that w has > j fixed points), (3) m ranges over all uncircled weak
excedances of w, (¢} 7{w,m) has the same meaning as above, and (d) v(w,m) is
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the number of circled fixed points d = wyg such that d > w,,. For example, if
w = 16(P482(D5, then 5{1) = 0,1(1) = 2, 9(2) = 1,4(2) = 1,7(4) = 2,v(4) =
1,7(5) = 4,v(5) = 1, yielding ri—griTiz1rits.

We prove (7) by induction on k. For k = 0 it asserts that P; = Py, which is
clear. Assume for k. Then

k
(8) D**'"Piynn =Dy | 3 ] risrentum-stw,m | U Pisa—s.
3=0 w m

Now an easy induction argument shows that
(9) DUly1_; = U Digaj + (rigrms + risa—j t o+ UL,

so that by Proposition 2.4,

DUIP; 35 = UH(UPi 50 4+ rijPig) + (rigas + -+ + 1)U Piyy .

Hence (8) becomes

k

D*Py i = Z lz H f:‘+1+u(w,m)—v(w.m}]
w m

J=0
A(UMPia + iU P + (ria—y + - AU T Picga).

Let I{k, j) denote the set of involutions in S with j circled fixed points. Then we
need to show that for 0 < j < k41,

A10)
> Iretswm-viwm = ( > A Y
wel(E+L,) m wel(i—1)  wel(h)

+(r:‘—j +--+ fi) Z ) ]_—_[ri+1+'i'(w,m)—-n(w,m)-

wel(k,j+1} ) ™

Define a bijection
L I(k,j - l)UI(k,j)U [I(ka.? + 1) x {112$"' :j + 1}] - I(k'}' I)j)

as follows. If w = wyws - -we € I{k,j — 1) (where 1, is an uncircled or circled
integer) then p(w) = @Qw; +1,ws +1,--- ,wi + 1 (where here and below w; + 1
is circled if and only if w; is circled}). If w = wywy---wi € I(k,7), then p(w) =
Lw +1,--,wz+1 Hw=wwe---wpr €I{k,j+1)and 1 <t < j+1, then
¢(w,t) is obtained from w; +1, wy +1,...,we+ 1 by replacing the t-th circled term
from the left, say w¢ + 1, by an uncircled 1 and placirg an uncircled wy 4 1 at the
beginning,
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Example. Let k=7, j =2. Then

P(1537204)=026483D5
P(D537204)=1Q6483 D5
WD537204, 1)=216@83 (D5
D5 Q7204 2)=46183@D5
PD5Q7204 3)=TQ6@8315.

it is easily secen that ¢ is a bijection. Moreover, if w € I(k,7 — 1) then m is
an uncircled weak excedance of @(m) if and only if m — 1 is an uncircled weak
excedance of w; and n(w(w),m) = 1 + n{w,m — 1), v(p(w),m) = v(p(w),m — 1).
I w € I(k,7) then m is an uncircled weak excedance of @(w} if and only if m =1
or m — 1 is an uncireled weak excedance of w; and 7(p(w),1) = 0, v(p{w),1) = j,
np(w),m) = L+ g(w,m — 1) for m > 1, v{p(w),m} = f{w,m — 1} for m > L
Finally if w € I{k,j +1)and 1 € ¢ £ j +1, then m is an uncircled weak excedance
of @(w,t} if and only if m = 1 or m — 1 is an uncircled weak excedance of w; and
n{p(w,t),1) = 0,v(p(w,t),1) = t — 1, while for m > 1 it is not difficult to check
that

n{e(w, t),m) — v(p(w,t),m) =1+ 5(w,m — 1) — v(w,m —1).

From these observations {10) follows, and hence also {7) for ¥ 4+ 1 by induction.

Now let i = 0 in (7). The left-hand side becomes {0 — k)0, while the right-
hand side becomes (since Pij—; = 0 for j > 0)

(Z H rq(w,m))ﬁ:

where w and m are as in (6). This completes the proof. 0

Consider now the problem of evaluating a(n — n + k), Le., the number of
saturated chains from P, to Poyr. In [Stasz, Thm. 3.2] a certain polynomial Ax(q)
{whose coefficienis are polynomials in r} was defined for which

Y aln — n+ k)g" = Ax(q)F(P,q),

nz>0
where F(P, g) := Y (#Pn)g" is the rank-generating function of P. An analogous but
more complicated result holds for r-differential posets. By (7) there is a polynomial
Tix(vo,yx1,--- ) in the variables yo,y_1,%1,... such that

k
(11) D*Pijy = ZTjk(?‘e,riﬂ, P
=0
2.2 TREOREM. Let P be an r-differential poset. Then the numbers a(n —
n + k) are given recursively {in k) by the formula

k—

1
(12) anon+k)= Y
0<i<n  j=C
i=n (mod k)

Tiplriyrizn, - - Ja(i — 3 — ).

150



Proof. Put i = r in {11} and apply the linear transformation ¢ : KP — K
defined by o(z) = 1 for all z € P. We obtain

k
aln—n+k)= szk(f‘mfn:I:h— . )af{n — j — n)

=0
k=1

=a(n~k—on)+ Y Tixlra,rasr,...Ja(n—j— n),
i=0

since Txx = 1. The solution to this recurrence (with the initial condition a(s —
i+ k)=0ifi < 0)is clearly given by {12). [J
By repeated applications of {12) we will eventually express a{n — n+ k) in the
form u
aln = n+k)= ZR{k(Tn_{,Tn_g+1, w3 T k=1 )Pn—1is
=0

where pn—i = #P,—; and Ra(y1,y2,.. ., Ys+) is 2 polynomial in yi,¥2,... ¥+
(independent of n). For instance,

aoln —n)=p,
i

o,r(n — n+1) = ZT‘.’}.‘),‘

i=0
i—1
ofn - n+2)= Z {{ric1 +rig1) Z ripi + ri(riq1 + pil.
<n j=0
f=r {mod 2)

It would be interesting to find a more explicit formula for a(r — n + k), along the
lines of (6} {the case n = 0).

Consider now a word w = w(U, D) = wyws---wy in the letters U and D. Let
z € P . We wish to compute the quantity {w0,z) (using the scalar product defined
in [Stas, §2]), i.e., the number of Hasse walks 0 = 2o, 3, ...,z = z with the cover
relation z;_; < z; or ;-1 > x; specified by w. For instance, (UDDUDUU(), z)
is the number of Hasse walks 0 = zg < 2y < 29 > 23 < 24 > Ty > Tg < Ty =
z. Clearly {w0,z) = 0 unless (a) for all 1 < ¢ < ¢, the number of D’s among
Wi, Wit1,- - ., we does not exceed the number of U’s, and (b) the difference between
the number of U’s and number of D’s in w is the rank p{z) of z. Let us call such a
word w a valid x-word. As in [Sta,), denote by e(x) the number of saturated chains
from § to z.

2.3 THEOREM. Let P be an r-differential poset, and let ¢ € P. Let w =
wiwy -+ wy be a valid z-word. Let S = {t : w; = D}, For eachi € 5, let a; be the
number of D’s in w to the right of or including w;, and let b; be the number of U’s
in w to the right of w;. Set f; = b; — a;. Then

(13) (wl, 2} = e(@) [[(ro + 71+ -+ +rp,).
ies
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Example. Let w = DUDDUUUU. Then § = {1,3,4}, a; = 3,i = 5, f1 =
202—262 4,fg-—20'-3—-1b3—-4f3—330

(wh, z} = e(x)(ro + r1 +r2)*{ro + 11 + r2 +73).

Proof of Theorem 2.3. Fix n > 0. Let w(,) denote the linear transformation w
restricted to K P,. By successive uses of Proposition 2.3(b} we can put w,) in the
form

(14) ) Wiy = Zc;,-(w)UiD-f,
“’J’
where ¢;j{(w) is a polynomial in rg,r;,.... {depending on n}, and where if ¢;; # 0
then ¢ — j = p{z). Moreover, this representation is easily seen to be unique. Now
U‘w(n) = Z C,‘j(‘w)UHl Dj
ilj
=¢-c,—,—(Uw) = c,-_ll}-(w).
Moreover, by (9) we have
Dw(a) = Y _ cij(w)DU;_; D}
if
= Z (W)U D + (Fnj + Tacjp1 + -+ + Tnejgia )UTH}D?
iJ
= Z cij(w)U DI
i¥
+ ) cis(w)ramg o+ ramjpica U DI
It follows that
¢ij(Dw) = cijo1(w) + ciga s (wWhra—j + -+ + Tajsi)-
In particular, when j =n = 0 we have

(15) ei(Uw) = ¢iq,9(w)
(16) cio{ Dw) = ciri0(w)(ro +-- -+ ri)-

Now put n = 0 in (14) and operate on 0. Since D0 = 0 for ; > 0, we get

(setting p = p(z)) _
wh = ¢,o(w)UP0.

Thus
{wl, 2) = cpo{w)e(z).
It is easy to see from (15) and (16) that
coa(w) = [J(ra +ri+--+rg),
i€s

so the proof follows. []

The previous theorem generalizes [Stag, Thm. 3.7]. When we put w = D"U" in
Theorem 2.3 (so ¢ = ), we obtain the following generalization of [Stay, Cor. 3.9):
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2.4 COROLLARY. Let P be an r-differential poset. Then

a0 —-n—-0)= Z e(z)?
zEPR,

n—1

=H(ro+r1+---+re)- 0

=0

As a variation of Theorem 2.3, let us replace the word w by (D + U)". Thus
{(D+ )"0, z) is the number of Hasse walks 0 = zy,21,...,Z, = z of length n from
0 to z.

2.5 THEOREM. Let P be an r-differential poset, and let x € P;, Then

(17) {(D+U)D,2) =e(2) Y ] rrcw.ny s

where (&) w = wywy -+ w, ranges over all involutions in S, with exactly ¢ fixed
points, (b) s ranges over the excedance set {s : w, > s}, (¢) ¥(w, 8) is the number of
fixed points t = w, such that s <t < w,, and (d) §(w,s) = #{t: s <t <w, < w}.

Example. Let n = 4 and ¢ = 0. For each involution w € 84 with no fixed points,
let @ and b denote the two indices s for which w, > 8. Then we have:

w a +w,a) 8(w, a) b y(w,b) é(w, b)
2143 1 0 0 3 0 0
3412 1 0 1 2 0. 0
4321 1 0 0 2 0 0

Hence
{(D +UY0,0) = 2rd 4 rory.

Proof of Theorem 2.5 (sketch). The proof is analogous to that of Theorem 2.1.
Instead of (7), one proves by induction on n that

(18) D+UE =) bii(n)U'D,
£J
where
(19) b{j(ﬂ) = Z Hrk+‘r(w,a]+6(w,a)—£(w.s)

where (a) w = wyw; - - - w, ranges over all involutions in S, with ¢ uncircled fixed
points and j circled fixed points, (b} s ranges over the set {s: w, > s} (the number
of such s is 1(n — i — 5)),(c) ~v(w, s) is the number of uncircled fixed points t = w,
such that s <t < w, (d) §(s) = #{t:s <t < w, < w,}, and (e) &(s) is the number
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of circled fixed points t = w, such that ¢ < w,. The proof of {17) then follows by
applying (18) to 0 (so k = 0) and taking the coefficient of z. []

When all r; = r (i.e, P is r-differential} then {17) simplifies considerably. For
each w, the product over s is just r3(*~%), 5o that

(D +U)D,2) = e(2)r3 "D L(n)
= e(z)rz®=? (?)(1 -3.5.-(n—i—-1)},

where I;(n) is the number of involutions in .S, with ¢ fixed points. This is essentially
the result appearing after Proposition 3.17 in [Stas].

In the special case when P is the infinite chain 0 < 1 < 2 < - (sor =
(1,0,0,---)), {(D + U)?"0,0} is well-known to equal the Catalan number Cn =
%ﬂ(zﬂ"). On the other hand, (17) yields that ((D + U)?"0,0) is the number of
fixed-point free involutions w = wyws -~ - ws, In Sz, such that we never have i <
J < w; < wj;. This is another well-known combinatorial interpretation of the
Catalan number .

A second major class of results in [Sta;] dealt with the evaluation of eigenvalues
and eigenvectors of certain linear transformations associated with differential posets.
Analogous results hold for sequentially differential posets, and moreover most of the
proofs are exactly the same. We therefore will simply state most results without
proof. Asin [Stas], Ch A or Ch{A,)) denotes the characteristic polynomial det(Af—
A) (normalized to be monic) of the linear transformation 4 : V — V on = finite-
dimensional vector space V. Moreover, we write p; = #P; and Ap; = p; — pj—1.

2.6 THEOREM (see [Stas, Thm. 4.1]). Let P be an r-differential poset, and let
7= 0. Then

(20) Ch(UDJ') = H(’\‘(ri + it +'“+?‘_,‘_1))Ap". 0

=0

2.7 COROLLARY (see [Stas, Cor. 4.2-4.4]). Let ; > 0. Suppose that for all
0 <<y, wehaver; +riy + - +7; # 0. Then U; is injective and Djyy is
surjective. Hence p; < pj41, and there is an order-matching p : P; — Pjyq (ie, p
is injective and p(z) > z foralf z € P;). 0

We will omit here the (easy} extension to sequentially differential posets of the
discussion of balanced endomorphisms in [Stas]. However, there is a special case
which is worthy of mention here.

2.8 LEMMA (see [Sta, Prop. 4.7]). Let P be an r-differential poset. Then for
allj>n>0,

vrDi = H(UDJ' = Fjmitl = Tjmi4z = —Tj-1)-

=1
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Proof (sketch). First show by induction on n that
UDjni1 = (UDj —rjnpr — - =m0 00
Then use the formula
UnD} = (U"DJ-_,,,.;_I)D;-‘_1
to deduce the lemma by induction on n. [J

2.9 PROPOSITION (see [Staz, Ex. 4.11]). Preserve the conditions of Lemma 2.8.
Then

J—n n

(21) Ch(U"D}) = 2% 7= [T~ [ (rit riga 4o s
i=0 k=1

(22) = AP P Ch(D"UL,).

Proof. It follows from Theorem 2.5 and Proposition 2.7 {as in the proof of [Sta;,
Prop 4.12]) that

(23)
J n
Ch(U"D}) = H(A - H(’"i Fripy o T = kel —Tkgz — - —Tj—1)) AP
=0 k=1
Hj—n<i<jandk=j—i4 1 thenr;i+ - +rj 1 —rj_ppa—-~1j1 =0.
Hence the factors in (22) for i > j — n contribute A2Pi-nt1++4P — \pi—Pi-n  If
l1<i<j—nthenri+- o drjig—Tj g~ —rjog =ri+ T+ + Tk,

so the formula (21) for Ch(U/™ D7) follows. To obtain (22), use the fact (mentioned
in the proof of [Staz, Thm. 4.1]) that if A: V — W and B : W — V are linear
transformations on finite dimensional vector spaces V and W of dimensions v and
w, Tespectively, then

Ch(BA) = A*~* Ch(4B). 1]

Note. It may happen that Ap; < 0in (20) and (21), so the corresponding factor
of Ch(UD;) or Ch(U™ D7) actually appears in the denominator. Hence (since Ch(A)
is always a polynomial) it must be cancelled by some factor in the numerator. This
puts constraints on the possible values of r and F(FP,¢) which may be interesting
to investigate further.

Recall now from [Sta; ] that a finite graded poset P of rank n is unitary Peck if
for 0 € 7 < [r/2] the linear transformation

UM . KP; — KPu_;

is a bijection. In particular, this condition implies that P is rank-symmetric (p; =
Pn—i) and rank unimodal (which in the presence of rank-symmetry means pp < p; <
o £ Plas))-
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2.10 PROPOSITION. Let P be a finite, rank-symmetric, rank-unimodal
r-differential poset of rank n. Then the following two conditions are equivalent:

(i) P is unitary Peck,

(#) f0<i<[n/2], Ap; > 0,andi <k <n—i—1, then

ridrign e+ #0
Proof. Clearly P is unitary Peck if and only if for all 0 < ; < [n/2], the

linear transformations D*~%U~" and U*~% D};~% have no zero eigenvalues. By
Corollary 2.9, we have

i n—2j
Ch(UH DRy = Wi =% [T = J[ (ri -+ + rnmjms)) 2
=0 k=1

= X~ ~% Ch( DYy,

Since P is rank-symmetric, we have p,_; = p;. Since P is rank-unimodal, we have
Ap; > 0for 0 <¢ < j, Hence the eigenvalues of U“‘zJD::f-" and D"~ U;-‘_z’ are
given by

n—2j
(24) [T (it +ramimn),
k=1

for those § with 0 < ¢ < 7 and Ap; > 0. One easily checks that the non-vanishing
of (24) for 0 < i < j and Ap; > 0 is equivalent to {i1). 0

Note: We do not know whether every finite, rank-symmetric, rank-unimodal
r-differential poset is unitary Peck.

2.11 CoROLLARY. The boolean algebra B, and subspace lattice L.(q) of Ex-
ample 2.5(b,d} are unitary Peck.

Proof. Using the values of r; given by Example 2.5(b,d), it is easy to check that
condition {ii} of the previous proposition is satisfied. 0]

The unitary Peckness of B, is implicit in {K, p. 317], though it probably goes
back much earlier. Simple proofs may be found in {F-H, Lemma 5.1}[G-L-L, p. 13].
The unitary Peckness of L,{g) is equivalent to a result of Kantor [K] (see [Sta;,
Thm. 2(d)}). Our proof seems simpler, since it is based on only simple structural
properties of L,(g). (On the other hand, Kantor obtains a related result for affine
subspaces which does not seem to follow directly from the methods here.)

Qur final result of this section is a generalization of [Sta;, Thm. 4.14]. The
proof is analogous to that of [Stas, Thm. 4.14] and will be omitted. As in [Stag],
given a graded poset P let H{F; ;1) denote the Hasse graph of the rank-selected
subposet

Pijg={zeP:i<po(z)<j}
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Thus the vertices of H(P; ;) are the elements of F; j;, and vertices z and y are
joined by an {undirected) edge if # covers y or y covers z. Denote by Ch H{Fj; ;)
the characteristic polynomial {normalized to be monic) of the adjacency matrix of
5{(}:’[5.3'])-

Regarding r = (rg,71,...) as fixed, define for 1 < a £ $—1 and s > 0 the
(b — o +2) x (b — a + 2) tridiagonal matrix

r O R(s,s+a—1) 0 0 ]
1 0 R(s,s+a) 0O
1 0
Mg) = )
0 R(s,s+b-1)

L 1 o

where
R(s,s+c)=ry+rep14+ -+ e

Finally set

a {
cl = chM¥.

2.12 THEOGREM. Let P be an r-differential poset, and let 0 £¢ < j. Then

Ch3t(By ) = [J(Cii™)2e— - T (€83, 0% 0
=0

a=§—i+1
For § —i < 2 Theorem 2.12 leads to the formulas

ChIURy ) = M

)
ChH(Pjj—q,5) = > i ]:.I()‘2 —{rj—strj_str1+-+ ri-q )P
o=1

ChH(Bj_y,5) = ABP (A% —rj_)2Pi-

J
IO~ @rjce F 2rmena 4 F 2 £ )N

=2

3. Shifted partitions. In the previous section we generalized the definition
of differential poset by modifying the formula DU — UD = rI. We could also ask
for generalizations in which the definitions of U and D themselves are modified.
There are now a vast number of possibilities, and if we wish to preserve interesting
enumerative resulés then I7 and D cannot be too different from their original def-
inition. Here we will consider only a single example which naturally arises in the
theory of symmetric functions and tableaux. In the next section we will consider
more significant alterations in the definitions of U and D, for which all enumerative
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results are lost but for which we can still deduce some structural properties of the
poset P in the spirit of Proposition 2.10.

A strict partition X of n, denoted A |= n, is an integer sequence A = (A1, Az,...)
satisfying Ay > Ap > - > Ay > Agpy1 = dega = -: =0 and 3 A = n. We also
write A = {A1,22,...,A¢). We call the integers X; > 0 the parts of A, and call
¢ = £()\) the length of A. Define the shifted Young’s lattice Y to be the sublattice
of Young's lattice, as defined in [Stay, p. 168] or [Stay], consisting of all strict
partitions (including the empty partition ¢ of of 0). ¥ is a locally finite distributive
lattice with 0 (and hence graded) with rank-generating function

F(Y,q)= [0 +4").

nz>l

The rank p(A) of A € ¥ is just the sum |)| of its parts (the same as in ¥). A
saturated chain ¢ = A% C A’ C -.- C A" = A in the interval [#, A] of Y is equivalent
to a standard shified tablecu of shape A. The number e(}) of each tableaux is often
denoted g*. For further information concerning these concepts, see e.g. [M, Ex. 8,
pp. 134-136][Sa][Ste].

Now define two contimuous linear transformations D, : K¥ — KY as follows:
D is the same as before, i.e., for A€ Y,

D= ) m

gEC—(A)

summed over all z which ) covers in ¥. U is given by

Orx=2 Z e+ Z v.

HECT(A) reCH()
£ p)=£(2) )8

Note that if v € C*H(A) with £(v) > £2) and A = (Ay,..., A¢), then A¢ > 2 and
v =, Ae 1),

3.1 PROPOSITION. We have DU - UD = 1.

Proof. The proof is a straightforward verification and will be omitted. []

Unfortunately there seems to be no analogue of (2) (or Proposition 2.4) for T
and D. This means that our previous results on differential posets {or on Young’s
lattice) have “shifted analogues” only in certain special cases. Before discussing
these results, let us first point out the connection with symmetric functions, analo-
gous to the connection between Young’s lattice and symmetric functions discussed
in various places in [Sta;]. Let Q,(z;£) denote the Hall-Littlewood symmetric func-
tion indexed by A {M, Ch. III], and write @) = @a(z) = @a(z; —1). The symmetric
functions Qx(x) were created by Schur [Sc| in connection with his investigation of

projective representations of the symmetric group. For further information, see e.g.
M, Ex. 8, pp. 134-136] [Sa][Ste].
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Now let Q5 denote the algebra of symmetric formal power series over K in
the variables # = {z,%3,...) consisting of infinite finear combinations of all
where X is a strict partition. This algebra is generated (as an algebra of formal
power series) by the odd power surns py,ps, .. ., i-e, Qx = K[[p1,p3,-..]]. (See [M]
for information on symmetric functions needed here.) Define a continuous vector
space isomorphism ¢ : KY — Qy by o(2) = 27PQ, for A € ¥. By known results
concerning the ,'s, the following diagrams commute:

By 2, Qs

0| %

RY —— Q.
Here p; and ai,;l have the same meaning as in [Stas, remark after Thm. 2.5). Hence
our results below on ¥ can all be interpreted in terms of symmetric functions.

We now consider some enumerative results from [Staz]{or Section 2 of this paper)
which depend only on the formmla DU — UD = I and therefore carry over to ¥
with U replaced by U. The first is [Stas, Thm. 3.7] {or Theorem 2.3 here). If
w is a word in the letters 7 and D, then {we, A} has the same value as in {Stas,
Thm. 3.7] (or (13) here with each r; = 1). But rather than counting Hasse walks
$ = AU, 21 .. A = ) with each choice A™! < AT or A*T! > A specified, now
{wg, A} counts such walks W weighted by a factor 24"W) | where #(W) is the number
of steps 3™1 < A for which £(X*1) = ¢(A\"). For instance, suppose w = D*"[J®.
Ifg =20 <Al < -~ <A” > A" 5 ... 5 A" = ¢ is a Hasse walk W, then
t(w) = [A"} — £(A"). Hence

(25) (D07g,4) = 3 2Py,
AfEn

where g* = e(}) as discussed above. Thus by Corollary 2.4 or [Stas, Cor. 3.9], we

get
Z 2"t =
Ab=n

a well-known formula with many combinatorial and algebraic ramifications.

Additional results from [Stas]which carry over to ¥ by replacing U/ by U are
Theorem 3.11, Theorem 3.12, Corollary 3.14, Corollary 3.15, Corollary 3.186, as well
as Theorem 2.5 from this paper. Let us state as an illustrative example the shifted
analogue of [Sta;, Cor. 3.14).
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3.2 PROPOSITION. Let

sz(n) — Z 28(W)‘

w

summed over all closed Hasse walks A%, A!,..., A% = A9 of length 2k in ¥ with
[A% = n, where t(W) is the number of steps A1 < X for which £{X"™?) = #()%).

Then .
St = L (P Tla+re) 0

n 20 4/ 1

The results in [Sta;, Section 4] concerning characteristic polynomials all carry
over to Y with U replaced by {f, so we will not state them explicitly here. Let us
note, however, that the shifted analogue of [Stas, Cor. 4.2] is the result that D is
surjective and U is injective. However, since U is adjoint $0 I we also get that U is
injective. Moreover, the shifted analogue of [Stas, Thm. 4.14} {or Theorem 2.12 of
this paper) evaluates not the characteristic polynomial of the graph }C(f’[;_ i), but
rather the digraph 3‘-((}’."[‘;}‘]) whose vertices are the elements of f’[i, j1, with one edge
from A to p if A covers u or if u covers ) and #{u) = £{A} + 1, and with two edges
from A to p if i covers A and £(p) = £(A).

It is natural to ask whether there is some modification of U/ and D for the
poset ¥ such that analogues of both (1) and (2) hold. A remarkable result of this
nature was found by M. Haiman (private communication) and will now be briefly
discussed. Let w = (1+1)/v/2 = e2™/8, T = (1 —i)/v/2 = e~27/2 (where i* = —1).
Define continuous linear transformations V, E : K¥ — KY as follows:

Vi=+v2 Z @t w Z v

pECT(A} weCt(a)
Hp)=1(r} L) > (2}
Ex=v2 Y u+3 > w
BECT(A) #ECT (A}
Hu)=£()) £{u) > E(A)

It is then straightforward to verify the following result.

3.3 PrOPOSITION. We have

EV-VE=1
EY = (V +@m)Y. 0

Reasoning as in [Stag, Cor. 2.6] leads to such results as

2
e{V+E)t e-%t +VteEt

3
eBteVt _ ot +Vi Et

~ 1.2 -
eE!Y — ewl‘.+2t +VtY.
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From this all the enumerative results in {Stas] will have shifted analogues in-
volving V and F instead of I and D. To obtain combinatonally meaningful results
one must take real and imaginary parts. As an example, consider
(26) A0 - n): = (V"0,Y)

= T Lt g
AEr
We get from the techniques of {Sta,] that
tn w 12
Zﬂ({] — n)—r-;i = ¥ttt
n>0

Thus

t" +%g= t
27 ’;RE BO—n)— = et by

Z Im B(0 — n)%: = et g -\%

nxo

Moreover, taking the real part of {26) yields

(28) Re (0 = n)= ) cag,
AER
where
9t (=t ) =0,1,7 {mod 8)
(29) ox=¢ —A—EON yX) =3,4,5 (mod 8)
D, £(X) = 2,6 (mod 8).

Combining (27), {28) and (29) yields a curious combinatorial result. Similarly we
have

Im 8(0 = n) = Z dxg*,

Afn
where
2l3tn—tOD] 4(})=1,2,3 (mod 8)
dy=q 23O px) =5,6,7 (mod 8)
0, ' £(A) =10,4 (mod 8).

4. Non-enumerative variations. Qur previous variations were close enough
to differential posets to retain many enumerative features of them. In this section we
will be concerned only with questions of injectivity and surjectivity of certain linear
transformations and their applications to structural properties of P; no explicit
formulas will be obtained.

Let P be a poset satisfying axioms (51} and (52} of Definition 2.1 (or (D1} and
(D2) of [Stag, Def. 1.1}). For each i > 0, define an axiom E; as follows:

(Ei) If z € P;, then z is covered by more elements than x covers, ie., #C*{z) >

#C~(z).
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4.1 THEOREM. Let P satisfy (51}, (52), and (E;) for some i. Let U and D
have their usual meanings. Then DU; : KP; — KP; is a bifection. Hence U; is
imjective and Dy is surjective, so (as in Corollary 2.7) p; < piy1 and there is an
order-matching y @ P; — P 4.

Proof. Given z € P, let
dz = #CT(z) — #C ().
The axioms (51}, {S2), and (E;} imply that
(DU - UD)z =d;x,

for all z € F;. Hence
DU, =UD;+ A,.

where A is a diagonal matrix (with respect to the basis F; of K P;} with positive
entries d,. Since U;_; and D; are adjoints (see [Staz, Sect. 2]), UD; is semidefi-
nite, Since A is positive definite, the sum UD; + A is positive definite and hence
invertible. 0

We now give an application of Theorem 4.1. Let p be a prime and k,n > 1.
Define La(p) to be the lattice of subgroups of the abelian p-group (Z/p*Z)". It has
been conjectured (though I cannot recall by whom) that Ly,(p) has the Sperner
property. (In general, the lattice of subgroups of a finite abelian p-group need
not have the Sperner property, e.g., the group (Z/pl) & (Z/p?Z).) One can also
ask whether L,(p) has stronger properties, such as being Peck, unitary Peck, or
having a symmetric chain decomposition. (It is well-known that Lg.(p) is rank-
symmetric, and by a recent result of Butler [B] is rank-unimodal.} The case k=1
is well-understood (see e.g. Corollary 2.11 and [G}); here we consider k = 2.

4.2 PROPOSITION. The Jattice L = Ly,(p) has order-matchings p: Li — Lipa
fori < nand p: Liy, — L; for i > n. Hence L has the Sperner property.

Proof. Clearly L satisfies (S1), while (52) follows since I is modular. Now let
G =(Z/p*I)*, and let H be a subgroup of G. It is not hard to see (see [M, (4.3},
p- 93] for a much stronger result) that

H = (2/p1) &(1/p*1)",
G/H = (Z/pI) & Z/p*T)" 7%,

where 7 +2k < 2n. Hence in the lattice L, H covers (p?** —1)/(p—1) elements and
is covered by (p"~* —1)/(p— 1) elements. If  +2k < n (i.e., the rank p(H) of H in
Lis < n), then j +k < n—k, so #CH(H) > #C(H). Thus (E;) holds for i < =,
so by the previous theorem there is an order-matching g : L; — Liyq for i < n.
Since L is self-dual [M, (1.5), p. 87] (or by an argument dual to the preceding) we
get an order-matching o : Liy; — L; for ¢ > n. It is now a standard argument (viz.,

162



the matching u partitions L into saturated chains all passing through the middle
rank L, ) to deduce the Sperner property. []

Perhaps some refinement of the preceding argument can be used to show that

Dn=2%igen—% . I _, L,,._; is a bijection for 0 € ¢ < n, and therefore establish
that L is unitary Peck.

We now consider a variation of Theorem 4.1 where I/ and D are replaced by
other operators. If P is a finite poset, then as in Section 2 let J{P)} denote the lattice
of order ideals of P [Stay, Ch. 3.4]. J{P) is a graded distributive lattice, with the
rank p(Q) of an order ideal @} of P given by its cardinality #Q. If Q € J(P), then
define

M(Q} = {z € P: z is a maximal element of Q },
m{@) = {x € P : z is a minimal element of P — @ }.

4.3 PROPOSITION. Fix an integer 0 < i < #P. Suppose there is a function
¢ : P — R satisfying the following property: for all Q@ € J(P);, we have

(30) Y sy < D éle)

zEM(Q) rEm{Q)
Then there is an order-matching p : J{P); — J(P)iy.

Proof. Define linear transformations U(¢), D(¢) : K-J(P) — K-J(P) as follows:
if @ € J(P) then

U= Y ¢@Q -7,
QeCt(Q)
D(BR= > Q-9

QEC(Q)

Here if @' — @ = {z} then ¢(Q' — Q) := ¢(z), and similarly for $(Q — @’).
It is not difficult to check that distributivity of J(P) insures that

31) (DU -U(HDNR=| > =) - > )|
zeEm(Q) zEM(Q)

Thus by (30) the expression in brackets in the right-hand side of (31) is positive for
all ¢ € J(P);. It now follows just as in the proof of Theorem 4.1 that D{¢)U(¢)
is positive definite. Thus U(¢); is injective, so by the usual arguments an order-
matching p : J(P); — J(P):yy exists. []

Unfortunately we have been unable thus far to find any interesting applications
of Proposition 4.3 that were not previously known.

The results and techniques of this section are closely related to work of Proctor
[Py] [Pz} [P4]. Given a finite ranked poset P of rank n, call a linear transformation
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Y : KP - KP a lowering operator if ¥z € KPF;_; when z € P;. Also call
X : KP — KP an order-raising operator if for all z € P, Xz = ) c.yy, ¢y € K,
where y ranges over CF(z). If there exist X,Y as above satisfying for 0 <i < n,

(32) (XY - YX) = (% —n)IL,

then P is calied an si(2)-posei. By methods similar to those here Proctor showed
that sl(2)-posets are Peck (and conversely) [Py, Thm. 1]. In some interesting cases
one can choose X = U (though usually not ¥ = D) [Py, Thm. 3]. This situation
combines features of Sections 2 and 3, since (32} is analogous to (3), while I/ and
Y replace &/ and D in Section 3.

Let us also point out the similarity between cur Proposition 4.3 and Proctor’s
concepts of edge-labelable posets [Py, p. 279] and vertez-lnbelable posets [Py, p. 105].
Indeed, a poset P is vertex-labelable if there exists a function ¢ : P — Q such that
the equation

S s@-10l= Y ) -IP-q|

zEM(Q) yeEm(Q)

is satisfied for every order ideal @ € J(P). Hence the quantity in brackets in
equation (31) is just [P} — 2-|Q|. From this Proctor deduces that J(P} is actually
an sl(2)-poset and hence Peck. Furthermore, Proctor [Py, Thm. 1] gives an elegant
classification of all vertex-labelable posets using Dynkin diagrams. If we regard the
function ¢ of Proposition 4.3 as labeling the edge (I, I') of J{P) by ¢(I' — I),then
we obtain an exact analogue of Proctor’s definition of edge-labeling. One could
also, as in Proctor, extend the concept to uniquely modular posets.

Finally let us mention that Proctor [Pa] contains results closely related to Propo-
sition 2.9 for some particular si(2}-posets.
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