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A Zonotope Associated with
Graphical Degree Sequences

RICHARD P. STANLEY

ABSTRACT. Let D, denote the convex hull in R” of all (ordered) degree
sequences of simple n-vertex graphs. Using the fact that D, is a zonotope,
an explicit generating function is found for the number of these degree se-
quences. The f-vector of D, is found using Zaslavsky’s theory of signed
graph colorings. Finally we give a generalization based on a result of Fulk-
erson, Hoffman, and MacAndrew.

1. Introduction

Let G be a simple graph (i.e., no loops or multiple edges) with vertex set
[n]:={1,2,...,n}. Let deg(i) denote the degree of vertex i. We call
the sequence d(G) := (deg(1), ..., deg(n)) the degree sequence of G . Note
that our degree sequences are ordered; we do not require, as is often done,
that the degrees are listed in descending order. Regard the vector d(G) as a
point in the vector space R”, and define

D, = conv{d(G) : G is a simple graph with vertex set [n]},

where conv denotes convex hull. Thus D, is a convex polytope, first consid-
ered by Koren [6] (suggested to him by M. Perles) and called the polytope of
degree sequences (of length n). Koren determined the vertices of D, and
gave a system of (redundant) linear inequalities which determine D_ . Subse-
quently Peled and Srinivasan [8] obtained considerable further information
about D, , including a description of its facets and edges.

It follows from the Erdos-Gallai inequalities (explained in more detail
below) that an integer point (d,,...,d, )€ D, n Z" is the degree sequence
of some graph G if and only if d, + -+ d, is even. Peled suggested
to this writer that the number of distinct (ordered) degree sequences of n-
vertex graphs might be closely approximated by half the volume of D, ,and
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556 R. P. STANLEY

asked whether it was possible to compute or estimate the volume of D, . It
turns out that D, is a zonotope, a special kind of polytope (defined below)
with a well-developed theory for computing the number of integer points, the
volume, the f-vector, etc. Moreover, there is a slight modification of D, ,
which we denote by 5;: , which is a zonotope combinatorially equivalent to
D, , but whose integer points correspond exactly to the degree sequences of
graphs. Using the theory of zonotopes we are able to determine exactly the
number f{(n) of degree sequences of n-vertex graphs, viz.,

12
Zf(n)% = % (1 +2Zn”%)

n>0 n>1

x (1 —;(n—l)"_li;—!) +1

n—2_n
E: !
e X /n.'

Moreover, using the connection between the zonotope 5n and Zaslavsky’s
theory of signed coloring [14], we are able to compute exactly the f-vector
of D, {orof D ).

2. The Ehrhart polynomial of an integer zonotope

A zonotope is by definition a (Minkowski) sum of closed line segments. In
other words, if L, ..., L, is a set of closed line segments in R”, then the
corresponding zonotope is given by

(1) Z(L,...,L)={a;+ - +a,:0,€L,,...,a €L}

If L joins the origin with the vector f, € R", then we also write
Z(B,,...,pB) for Z(L,...,L,).
For any positive integer ¢ and any convex polytope 2 with integer ver-
tices, let i(57, q) denote the number of points « € & satisfying qa € Z” .
Then (&, gq) is a polynomial function of ¢ of degree dim.4?, called the
Ehrhart polvnomial of 2. Thus (%, 1) is equal to the number of integer
points in % . Moreover, if % C R", then the coefficient of ¢" in (%, q)
is equal to the m-dimenstonal volume of %¢. For these and other basic facts
concerning Ehrhart polynomials, see, e.g., [11, pp. 235-241]. The following
lemma is a refinement of a result of Shephard {9, Theorem 54]. Define a
half-open cube C 1o be a Minkowski sum of linearly independent half-open
line segments L, ..., L . In other words, if o,...,a., f,..., B, € R”
and f, ~a,,..., B, —a, are linearly independent, then C has the form

C={aqo,+(1-a)B,+a0,+{1-a)f,+---+ae +(1-a)p :0<a, < 1}
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We call the vectors y, 1= f, — o, the generating vectors of C. (If s =0 then
C 1is a single point, whose set of generating vectors is empty.)

2.1. LEMMa. Let L, be the line segment connecting the originto y; € R®,

1 <i<r. Then the zonotope Z =Z(L,,...,L)=Z(y,,...,7,) isadis
Joint union Z = \JJ, Cy of half-open cubes C,, where (a) X ranges over
all linearly independent subsets of {y,, ..., 7,},and (b} if X ={d,,...,4,}
then there are signs e, € {—1,1} such that C, is generated by
e,6,,...,ed, . Moreover, ifeach y, € Z" then the vertices of each C v liein
z".

SKETCH OF PROOF (suggested by G. Ziegler). The proof is a “Tutte-Grothen-
dieck argument”, in the sense of [2]. We proceed by induction on r. The
lemma is clear for r = 0, when Z consists of a single point. Assume now
the case for r~1. Let Z'=2Z(L,,..., L,_,),s0 Z' has a desired decom-
position Z' = |JC v » Where X ranges over all linearly independent subsets
of {7,,...,7_;}. Now orthogonally project Z " to a hyperplane orthogonal
to L . We obtain a zonotope Z generated by the projections L , ..., L,_,
of the line segments L ,..., L _,. By induction decompose Z = Uy Gy,
where the sets Y are projections of subsets Y of {¥y»..., 7,_} for which
Y U{y} 1s linearly independent. Now “lift” this decomposition back up to
R". Each half-open cube Cy is lifted to a product (O, »,] x C}, where
(O, 7,] denotes the half-open interval from the origin @ to y, which ex-
cludes O and includes 7, . Then

o=(er)o[yo-na)

gives a desired decomposition of Z. 0O

The next thearem is a basic result about the Ehrhart polynomial of an in-
teger zonotope. It was stated without proof in [10, Example 3.1; 11, Exercise
4.31]. The special case of the volume of a zonotope Z ¢ R" (the coefficient
of ¢" in i(Z, q)) is due to McMullen (see [9, (57)]) and also appears in [7].

2.2, THEOREM. Let f,,..., 8, € Z"'. Let Z denote the zonotope
Z(B,,....B). Then

(z,q)=3 hx)g",
X

where X ranges over all linearly independent subsets of {B,, ..., B}, and
where h(X) denotes the greatest common divisor of all minors of size |X| of
the matrix whose rows are the elements of X .

Proor. By the preceding lemma, we have Z = JCy , where X runs over
all linearly independent subsets {d,,...,d.} of {8,,..., 8.}, and where
Cy is a half-open cube with integer vertices generated by +4,, ..., =6 . for
some choice of signs. Suppose C is any half-open cube with integer vertices
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generated by vectors {,, ..., € Z'. let Y= {§1,-.-. 4} Let A be the
(additive) abelian group of integer vectors in the subspace of R” spanned by
Y,so A= Z'. Let T be the subgroup of A generated by Y . By standard
propertics of determinants we have A(Y)=[A :T], theindexof I'in A. On
the other hand, it is easy to see that CNA is a set of coset representatives for
I'in A. Hence {(C, 1) =#(CnNA)=h(Y). By a simple scaling argument
it follows that i(C, g) = h(}’)qu| for any integer ¢ > 1. Hence

i(Z,q)=Yi(Cy, )= h(X)g™. o
X

X

3. Counting degree sequences

We will now apply Theorem 2.2 to a modification 5,1 of the polytope
D, . For a graph G on the vertex set [n] with degree sequence d{G) =

d,,...,d,), define the extended degree sequence
d@=d,....d , Nd +---+d)).
Then define the polytope of extended degree sequences,

ﬁn = conv{d(G) : G is a simple graph on the vertex set ]} c R™,
Since the last component of vectors in f)n is a fixed linear combination of the
first 7 components, it follows that D and ﬁn are linearly equivalent and
hence combinatorially equivalent. However (and this is the point of defining
f)" ), they do not have the same Ehrhart polynomial.

Let us recall the Erdos-Gallai conditions (see any graph theory text) char-
acterizing the degree sequences of simple graphs: A vector (d,,...,d,) of
positive integers d; satisfying d, > --- > d, is the degree sequence of some
simple graph G if and only if the following two conditions hold:

J n
(EG1) dod—ji-1)< Y min(j,d), 1<j<n
i=1

i=j+1
(EG2) d +---+d, is even.
From these conditions it is easy to deduce (see [6]) that the condition for
an arbitrary vector (d,,...,d,) of positive integers (i.e., not necessarily

satisfying d| > --- > d,) to be the degree sequence of a simple graph is given
by a system of linear inequalities, together with (EG2). (These conditions
in fact follow from an earlier result of Tutte [12] and are also obtained in a
more general context in [4, Theorem 2.1].) It follows that (4, , ..., d,)e 7"
is a degree sequence if and only if (4,,...,d,)€ D, and d, +---+d,_ is
even. Hence from the definition of ﬁn we conclude:

3.1. ProrosiTION. There is a one-to-one correspondence between degree

sequences d(G) of simple graphs G on the vertex set [n] and integer points
in D, given by d(G) ~ d(G).
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More generally, an analogue of the Erdos-Gallai condition for multigraphs
{graphs with repeated edges, but no loops) with edge multiplicity bounded
by g yields the following result (which is generalized further in Proposition
5.2).

3.2. PROPOSITION. Let g be a positive integer. Then i(ﬁn, q) is equal to
the number of distinct degree sequences of multigraphs on the vertex set [n]
such that no edge multiplicity can exceed ¢q .

Now let ¢; denote the ith unit coordinate vector in R", and write e, =

e, +e;. Let é;; be the vector in R*"! obtained by adjoining to e, ; an
(n+ 1)st coordinate equal to 1. Clearly for a graph G on the vertex set [r],

dG)=3"e;, dG=)¢,
where both sums range over all edges {i, j} of G. From this it follows
easily that D, and D, are zonotopes, given explicitly by

Dn=Z(eij:lgi<j5n),

(2) B - z(c.: o
n=2(&;:1<i<j<n).

(Of course, since D, and 5n are linearly equivalent, it follows that one is a

zonotope if and only if the other is.)

Now define a guasitree to be a connected graph which is either a tree or
has exactly one cycle, which is of odd length. A gquasiforest is a graph whose
components are all quasitrees. We have come to the main result of this
section.

3.3. THEOREM. The Ehrhart polynomial i(D_, q) of D, is given by

n—1

i(D,, q)=a,(n)g" +a,(n-1)g""" +-- +a,0),

where
a,(i) =Y max{1, 27"y,
X

here X ranges over all quasiforests with i edges on the vertex set {n), and
e(X) denotes the number of (odd) cycles of X .

ProoF. By Theorem 2.2 and (2), we have

a, (D)= h(X),
X

where X ranges over all i-clement linearly independent subsets of En =
{é;:1<i<j<n},and A(X) has the meaning of Theorem 2.2. Let us
identify a subset X of E_ with the graph on the vertex set [#] which has
an edge {i, j} if and only if &, ; € X. When is X linearly independent?
We could appeal to Zaslavsky’s extensive theory of signed graphs {13] to
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answer this question, but it is also casy to proceed directly. If X is linearly
independent, then every component Y of X with i vertices may contain
at most i edges, since any i + 1 vectors in R are dependent. Thus every
component Y of X iseither a tree or contains one cycle. It is easily checked
that a connected graph Y with at most one cycle is linearly independent if
and only if Y is a tree or the unique cycle of ¥ has odd length. Thus we
have that X 1s a quasiforest.

Assume then that X is a quasiforest, and set m = |X|. We need to
compute A{X), the gcd of the m x m minors of the matrix M whose rows
are the vectors ¢, ;EX. Thus the rows of M are indexed by the edges of
X and the columns by the vertices, together with a last column of 1s. An
m x m minor of M corresponds to choosing either s vertices of X (i.e.,
m numbers from [#]) or m — 1 vertices of X and a final column of 1s. In
the first case, in order for the columns to be linearly independent we must
choose all vertices from any component of X with an odd cycle, and all
but one vertex from any component of X which is a tree. Each odd cycle
contributes to a factor +2 to the minor, and we obtain a value £

Now consider the submatrix N obtained by choosing m — 1 vertices of
X and a final column of 1s. Again, in order for the columns to be linearly
independent we must choose our #1—1 vertices in one of the following ways:
(a) choose all but one vertex from every component ¥ which is a tree, choose
all but one vertex from some component Ty which has an odd cycle, and
choose every vertex from the remaining components 7 with one odd cycle,
or (b) choose all but two adjacent vertices { and j from some component
which is a tree, choose all but one vertex from the remaining components
which are trees, and choose every vertex from the components with one odd
cycle.

In case (a), in the submatrix N subtract one-half of every column except
the last from the last column. Every entry of the last column is now 0 or
1/2. Factor out 1/2 from the last column. The resulting matrix N’ is the
incidence matrix of a graph X’ for which every component has exactly one
cycle, which is of odd length. Moreover, X' has the same number of odd
cycles as X . Hence det N' = £2°% | so det N = +2°%)7!

In case (b), there is a row which is all Os except a 1 in the last column.
Hence we may delete this row and the last column without affecting the value
of the minor (except possibly for sign). Let X’ denote the graph X with
edge {i, j} deleted (but retain all vertices). We now have a matrix obtained
from the incidence matrix of X' by deleting a column (vertex) from every
component which is a tree. Since X' still has ¢(X) odd cycles, it follows
that the value of the minor is 2%/

Thus we have seen that all nonzero minors of M are equal to +2°%) or
+2°Y=1 The latter value is possible if and only if ¢(X) > 1. Hence the gcd
of the minors of M is given by max{1, ZC(X)_I} , and the proof follows. 0O
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3.4. CorOLLARY. The number f(n) of distinct degree sequences of simple
graphs on the veriex set [n)] is given by

(3) f(ny =" max(1, 277"y,
X

where X ranges over all guasiforests on the vertex set [n], and c(X) denotes
the number of (odd) cycles of X .

ProoF, Put ¢ =1 in Theorem 3.3, O

It would be interesting to find a direct combinatorial proof of {3). An anal-
ogous problem to determining f(n) is to find the number g(n) of distinct
outdegree sequences of orientations of the complete graph K, . Using the
theory of zonotopes as we have done here, it was shown in [10, Example 3.1]
(see also [11, Exercise 4.32]) that g(n) is equal to the number of (labelled)
forests on n vertices. A combinatorial proof of this result was subsequently
given by Kleitman and Winston [5]. Perhaps their techniques can be used to
establish (3). However, while the enumeration of outdegree sequences can
be extended to orientations of any undirected graph (as discussed in the pre-
vious three references), an analogous generalization for degree sequences of
subgraphs of a given graph G seems only to hold for a special class of graphs
G (see §5 for further details).

It is a fairly routine exercise in enumerative combinatorics to convert The-
orem 3.3 into a generating function for i(ﬁn . q).

3.5. PROPOSITION. We have

1/2
n n__R
L, x 1 g x
E I(D,,,Q')n—!=§ (1+2E n" ] )

nz>0 nxl

nyn r—=2_p—L_n;
<[ 1= (n- l)n_lqn);*) + 1] edanz W4T,

n>1

Here and below we set 0° = 1 (which arises when n = 1 in the second sum
on the right-hand side).

ProoF. We assume knowledge of the theory of exponential generating
functions, in particular the exponential formula, as expounded for instance
in [3, Theorem 4.3]. The number of rooted trees on # vertices is n" ' , With
exponential generating function

n

R(x)=S"n""'L

{x) RZZ] pY

Hence the exponential generating function for k-tuples of rooted trees is

R(x)k and so for undirected k-cycles of rooted trees (i.e., graphs with exactly
one cycle, which is of length k > 3} is R(x)*/2k .

Let 4(j, n) be the number of graphs on the vertex set [n] such that every

component has exactly one cycle, which is of odd length > 3, and with j
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cycles. (Such graphs have exactly » edges.) Then by the exponential formula
we have

N t 241
Z h(j,n)—— =exp ) ==——-R(x)
5o n! g2(2k+ 1)

—exp [%(log(l ~ R(x)™ — log(1 + R(x))™") = R(x)

_ {1+ Rx) ih o~ R)2
1 - R(x) :

Thus,

1

1+ 3 27, n) —1+2

j,n>1

I+ R{x) 172 —R(x)
(1—R(x)) ¢

2 1/2 R(x)
(_1+_1—R(x)) e +11.

Tt is well known (and easily deduced from R(x) = xe™™) that

1 _ R X" RO _ - 1x
1—R(x)‘2”?’ 1= (n-

n>0 ' n>1

-1
)

s0 we get

1+ 3 27, n)%

iinzl

(4) ) N\ 72
=5 (1+2Zn"’;—!) (1—2(:1—1)” ";)H

nzl n>1

There are n"~ free (i.e., unrooted) trees with n labelled vertices, each
with n — 1 edges. Hence if (i, n) denotes the number of forests with /
edges on the vertex set [n], then

i n=1_n

N
. qx n-24 X
E r(i,n =exp§ b P

i, >0 ) n>1

Since all graphs enumerated by h(n, j) have exactly n edges, there follows

-1 _n

Zt(Dn,q 1+ Z 2~y )(qx epon" 24" x )

nz0 j.n>l n>l

Comparing with (4) completes the proof. O
Putting ¢ = 1 in Proposition 3.5 yields:
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3.6. COROLLARY. We have

1/2
3 fim’ = % (1 +22n"%)

n>l

_lxn nn—2 n t
X (1-Z(n—1)" ",7!")+1} PSS

n>1

Some small values of i, := i(ﬁn , q) are given by:

i=1

iy=1+g

z‘3=1+3q\r+3qr?'+q3

i, =1+6g+15¢" +20¢° + 124"

iy = 1+ 10g + 45¢° + 120¢° + 195¢" + 1624’

i = 1+ 15¢ + 105¢” + 455¢° + 1320¢" + 25084° + 25404°

i, =1+ 21q +210g° + 1330¢° + 58804" + 185644 + 39809¢°
+ 460359

ig = | +28¢ + 378¢° + 32764 + 20265¢" + 932404’ + 3178004°
+749200g" + 9515524"°.

Moreover,
f(1)=1
f2)y=2
f(3)=8
f(4)=54
f(5) =533
f(6) = 6944

F(7) = 111850

£(8) = 2135740

£(9) = 47003045
£(10) = 1168832808.

The coefficient of g" in i(ﬁn , ) is the n-dimensional relative volume
V(D,) of 5" (see, e.g., [10, p. 335] or [11, pp. 238-239] for the definition}.
Putting 1/¢g for ¢ and gx for x in Proposition 3.5 and then setting ¢ = 0
vields:
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3.7. CorOLLARY. We have

We also have that

(3) V(D) =3 2",
X

where X ranges over all graphs on the vertex set [#] for which every compo-
nent has exactly one cycle, which is of odd length, and where ¢(X) denotes
the number of {0dd) cycles of X . Moreover, in regard to Peled’s question
about the volume of D, , we have by similar reasoning that

V(D)= ch(z’(),
X

summed over the same range as (3), so V(D) = 2V(I3n) . Moreover, V(D, )
is the ordinary volume of D, for n > 3.

4. The f-vector of D and 5n

We mentioned in §1 that Koren, Peled, and Srinivasan obtained a descrip-
tion of the vertices, edges, and facets of D, (or 5n ). Beissinger and Peled
[1] used the description of the vertices to obtain a formula for the number
of vertices (see equation (7)). Here we extend this result to a determina-
tion of the entire f-vector f(D,) = (f,(D,), ..., f,(D) = (fys -5 [}
where D, has f, i-dimensional faces. (Normally the f-vector of a d-
polytope only includes f, for 0 <7 < 4 — 1, but it will be convenient for
us to allow 0 < i < nr.) Thus, f(D)) = (1,0), f(D,) = (2,1,0), and
f(D;)= (8,12, 6, 1), the latter since D; is a 3-cube.

Our derivation will be based on a result of Zaslavsky concerning the col-
oring of signed graphs. Let —K, denote the negative complete signed graph,
i.e., the complete graph K, with every edge labelled with a minus sign [13,
§7D]. The matroid M = M(—K,) which Zaslavsky associates with —K, is
just the linear matroid {e,;: 1< i< j<n}CR". Hence by (2), Zaslavsky’s
zonotope Z[-K,] (defined in (14, p. 226]) is just D, .

In [14, pp. 217-218], Zaslavsky defines a signed coloring of —K, (more
generally, Zaslavsky deals with an arbitrary signed graph X) in g > 0 colors
to be a function kK : N — [—pu, pu) = {—p,—u+1,...,0,...,0—1,u},
where N = [n] denotes the vertex set of —K, . The set of impropriety 1(k)
of k consists of all edges {i, j} of —K, for which k(i) = —k(j) [14, p.
218]. Call such edges improper. The rank of I(k) is defined by rki(k) =
n — b(I{k)), where b(I(k)) is the number of bipartite components of I(k)
(considered as a graph on the vertex set [n]) [14. p. 216). The Whitney
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polynomial of —K, is defined by
w_g (x, 2u+ 1) =3 x1
k

summed over all signed colorings in x colors.

We can now state the result of Zaslavsky [14, Corollary 4.1 ] (specialized
to Z=-K, and Z[Z] = D,), which will be our main tool for evaluating
the f-vector f(D,).

4.1. ProposiTION. We have
n .
DS = (1) w_y (—x, -1).
i=0

The main result of this section is the following:

4.2. THEOREM. We have

n in xt _ ﬁ
ZZJ;(Dn)Xt e (I+x)t—x(1+x)5

n>0i=0 nt 1+2(€_t—1)+%(exr_1)_%(62xr_l)'

Proor. We may choose a signed coloring & : N — [-¢,¢] of —-K, as
follows. First choose the sets A, = k~'{—i, i}. Thus (4,,4,,..., 4,)
is a weak ordered partition of [n] into u + 1 blocks, ie., [JA, = [7] and
A,NA4, =2 if i #j. (“Weak” means that we allow 4, = ©.) Let g, = |4|.
Now for each block A; with 1 <7< u, choose a subset B, = k_l(i). For
two of these choices (when A, # & ), namely B, = A; and B, =, there will
be no improper edges incident to vertices in A, so 4, forms a, bipartite
components of I(k), each consisting of a single vertex. For the remaining
2% — 2 choices of B, (when a, > 1}, all edges from B, to 4, — B, are
improper; these edges form a single bipartite component of (k). There
remains the case of A4;,. All edges between vertices in A, are improper, so
we get a component of I(k) isomorphic to the complete graph Kan. This
component will be bipartite if and only if a; =0, 1, or 2. It follows that

I
(6) w_g (x, 20+ )=x" 3 w(gy) [J@x" + (2% - x(a, #0)x7"),
(g A,) i=1

where: (a) the sum ranges over all weak ordered partitions of [r] into x+1
blocks, (b) x(a; #0) =1 if a; # 0 and = 0 if g, =0, and (¢) v(g,) is
defined by

1 ifa=0o0ra>3,

va={ .
x ifa=1lora=2.
Now suppose g;, ..., g, are any functions defined on N, and define

{using the notation of (6))

h(n) = Z go(a(})"'g‘u(a‘u)-
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It then follows from standard properties of exponential generating functions

that
hn) = [ ]H(gﬂg 1)1,),

where [ﬁ,—"!]F (1) denotes the coefficient of ¢"/n! in the generating function
F(t). Hence from (6) we have

=x"[;—!] (x- bx +Z‘J) (1+Z(2x‘""+(2f—z)x")%)

jiz3 szl

2 J ) , A
(1+%+ %) (1+Z(2x‘1+(2’—2)x“)%)

j>3 21

2
((1—x)t+x(1—-x)— I)

x (1 +2(e’ — 1) - %(e” -1+ %(eb“ - 1))#.

Substituting —x for x, —¢ for ¢, and —1 for u yields

n 1) = fn xt 1 1 tz
(=1 ’w_K"(—x,— }= [;ﬁ] e —(1+x)t—x( +x)§

(e - 1))_1.

| =

x (1 +2e = 1)+ %(e’“ — 1)~

The proof follows from Proposition 4.1. O
From Theorem 4.2 one can compute:

f(D)=(1,0)

f(Dy)=1(2,1,0)

f(D)=(8,12,6,1)

f(D,) = (46, 108, 84,22, 1)

f(Dy) = (332, 1020, 1080, 450, 60, 1)

f(Dg) = (2874, 10830, 14880, 9160, 2460, 224, 1)

£(D,) = (29874, 129486, 220920, 182770, 75670, 14238, 882, 1)
£(Dg) = (334982, 1726648, 3529344, 3679872, 2074660,

610288, 81144, 3322, 1}.
Putting x = 0 in Theorem 4.2 yields

(7) Zf(‘-} 1——:__(1—!):3,

T T =
S0 ?1 —14+2¢ 2—e
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agreeing with a result of Beissinger and Peled [1, p. 216] mentioned at the
beginning of this section.

5. A generalization

We wish to generalize Theorem 3.3 by considering degree sequences of
graphs which are contained in a fixed graph G. More precisely, let G be
a multigraph (i.e., allowing multiple edges, but not loops) on the vertex set
[#]. Define a convex polytope D(G) C R™' by

D(G) = conv{d(H) : H is a spanning subgraph of G}.
Thus 5,1 = ﬁ(Kn) , where K, denotes the complete graph on [»]. It is easily
seen that _
D, = Z(éij :{i, j} is an edge of G).
(Here we take &;; a total of m times if there are m edges between [ and

Jj-) The following generalization of Theorem 3.3 is proved in exactly the
same way as Theorem 3.3.

5.1. THEOREM. The Ehrhart polynomial i(DXG), q) of D(G) is given by
i(ﬁ(G), q) = aG(n)q" +ag(n - 1)(1"_l +- -+ ag(0),

where 1t
ag(i) =S max{1, 2"},
X

here X ranges over all spanning quasiforests of G with i edges, and c(X)
denotes the number of (odd) cycles of X .

We would like to interpret i(ﬁ(G) , ¢) in terms of degree sequences anal-
ogously to Proposition 3.2, We therefore need to know when Proposition 3.1
extends to D(G). Call G an FHM-graph (named after the authors of [4]) if
the following property holds:

{(FHM). No induced subgraph of G consists of two vertex-disjoint odd
cycles (with no other edges). (Equivalently, every induced subgraph of &
has at most one nonbipartite component.)

Given a multigraph G on the vertex set [#], let

A(G) = {d(H) : H is a spanning subgraph of G}.

Define a map ¢, : A(G) — 2" by p{d(H)) = d(H). Clearly 9 IS
one-to-one. It is immediate from the definition of ﬁ(G) that

®) 95(AG)) € D(G)nZ"™".

5.2. PROPOSITION. We have ¢_(A(G)) = D(G)NZ™" ifand only if G is
an FHM-graph.

Proor. The “if” part follows from [4, Theorem 2.1], while the “only if”
part (which is easy) follows from the last paragraph on p. 170 of [4]. o'

'Tam grateful to L. Lovdsz for bringing the paper [4] to my attention.
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Now given any multigraph G on [n] and any integer ¢ > 1, define G\
to be the multigraph obtained from G by replacing each edge by g edges,
and let f (G(‘”) denote the number of distinct degree sequences of spanning
subgraphs of G

5.3. THEOREM, For any multigraph G on [n] and any integer q > 1, we
have

£(69) < i(D(G), 9).
Equality holds if and only if G is an FHM-graph.

Proor. From the definition of FHM-graph we see that for any integer
g1, G isan FHM-graph if and only if G'9 is. Moreover, by the definition
of D(G) we have D(G(‘”) = ¢D(G), where for any polytope & we define

gF = {gqa:ac F}

Since
i(D(G), q) = #(aD(G)nZ"")y = #(D(G)nZ"),

the proof follows from (8) and Proposition 5.2 (and the fact that ¢ is
one-to-one). O

A special case of FHM-graphs is bipartite graphs. Theorems 5.1 and 5.3
yield for these graphs the following result.

5.4. CorROLLARY. Let G be a bipartite (multi)graph on the vertex set [n].
Then
F(GD) = bg(n—1)g" +bg(n—2)" " + -+ + b4(0),

where b;(i) is the number of spanning forests of G with i edges. In partic-
ular, f(G) is equal to the number of spanning forests of G .

We mentioned after Corollary 3.4 that the number g((G) of outdegree
sequences of orientations of any graph (or multigraph} G is equal to the
number of spanning forests of &, and that this result has a combinatorial
proof, Hence by the preceding corollary we have f(G) = g(G) when G is
bipartite. It is easy to give a combinatoriai proof of this fact. Namely, if G
has vertex bipartition (4, B) andif D is an orientation of G, then let 6{D)
be the spanning subgraph of &' consisting of those edges which are oriented
from 4 to B in D. Then D and D’ have the same outdegree sequence
if and only if ¢(DP) and o(D’) have the same degree sequence, yielding the
desired bijection. Hence the combinatorial proof [5] vields a combinatorial
proof of Corollary 5.4 when ¢ = 1, and this leads easily to a combinatorial
proof for any g .

Combining Theorems 5.1 and 5.3 when g = 1 yields that for an FHM-
graph G,

9) £(G) =Y max{1, 29071y,
X
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where X ranges over all spanning quasiforests of G. It would be interesting
to find a generalization of (9) valid for all graphs . While we have been
unable to do this, there is a more general class of graphs than FHM-graphs
which we can handle. Recall that a closed trail T of length m in a graph G
is a sequence vye v e,v, --e, v, such that each v, is a vertex, each e, is
an edge, v, = v, , any two adjacent terms are incident in &, and finally all
the e,’s are distinct. Call the closed trail T even if m is even.

5.5. ProposITION. Let ¢ be an edge of the graph G. Then f(G) =
2f(G—e) if and only if e does not belong to an even closed trail of G.

PrOOF. Note that f{G) = 2f(G - ¢) if and only if there do not exist
spanning subgraphs H, H' of G such that d(H)=d(H'), e is an edge of
H, and e is not an edge of H'. Suppose e is an edge of the even closed
trail v,e,v, - e, v, . Let H have edges e ,e,,..., ¢, ,,and H have
edges e,,€,, ..., ¢, . Then d(H) = d{H'), and e is an edge of exactly one
of H and H'. Thus f(G) #2f(G—e).

Conversely, suppose H and H' are spanning subgraphs of G such that
d(H)=d(H), and let e be an edge of H but not of H . Let B be the set
of edges of H which are not edges of H', and let R be the set of edges of
H' which are not edges of H . Regard the edges in B as “blue” and in R
as “red”. Consider the graph ' whose edges are B U R. Every vertex G’
is incident to the same number of blue edges as red edges. It follows easily
that there i1s a closed trail T containing e whose edge alternate blue and
red. Hence T 1is even, as desired. [

The point of Proposition 5.5 is that even though G may not be an FHM-
graph, after we remove all edges not belonging to even closed trails the result-
ing graph may then be an FHM-graph. Thus equation (9) and Proposition
5.5 gives us a formuia for f{G). We also may assume G is connected, since
clearly f(G+ H)= f(G)f(H), where G+ H denotes the disjoint untion of
G and H.
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