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Hence

nt{n — 2t + 1)

W(2)=:.E_’,:n’(n—-t—i)l+ ;

(n — 2t 4+ DI,
n=2t+1.

. Three runs of length ¢ can occur in one of three ways:
(i) one run of length ¢+ 2, -+ 3, - - -, 3t — 2, {ii) cne
run of length ¢ and one of length #-+1,¢+2, - - -, 2¢t—1,
or (ifi) three disjoint runs of length ¢. In the first case, as
before, onc run of length ¢ + i can begin on any one of n
symbols, leaving (n — ¢ ~— i)l ways of permuting then — ¢
remaining symbols and n ways of shitting each permuta-
tion cyclically. Now, however, we get an additional factor
of i — 1, as there are i — 1 places on which the middle run
can begin. In the second case, there are n(n — 2t + 1 — i)
ways of choosing two disjoint runs of length ¢ and ¢+ i,

{n—2t4+1—1i)! ways of permuting the n — 2t +1—1

subsets that remain when one run is fixed in place, and
n ways of shifting each permutation cyclically. In the
third case, there are n(n — 3t + 2)(n— 3t + 1)/6 ways
of choosing three disjoint runs of length ¢, (n — 3¢ + 2)!
ways of permuting the n — 3¢ + 2 subsets that remain

- when one run is fixed in place, and n ways of shifting

each permutation cyclically.

Hence
WE =S (1= Dni(n—t— i)

1-1 . ‘
+ 3 n—2+1—i{n—2+1— i

=1

t(n — 3t — 3¢
+n(n 3+9é)(n 3+1)(n-—3t+_2)l,

n=3+1.

We leave it to the intrepid reader to expand
1—W(l)/nl + W(2)/nl — W(3)/n! in a power series in
1/n and verify that the terms given in the statement of
the theorem are correct. With this the proof of Theorem 2

is complete.

It is evident that the above procedure can be continued
to give the asymptotic expansion of F(n,t}/nl to any
desired accuracy.
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C Coding Theory: Moments of
‘Weight Distributions

R. Stanley

1. Introduction

In Section 2 of this report, a gencral combinatorial
formula is developed which allows calculation of sums
of the type

i 2 [a(0)]*,

ved

0=t=r

where S is a set of vectors v, ¢ {v) is the sum of the coordi-
nates of v, and r is an integer depending on a special
property of the set S. In Section 3, this formula is applied
to (n, k) binary codes and yields explicit formulas for the
sums '

fta,, O0=t<d

Na

where a; words of the code have weight i, and d is the
minimum weight of the dual code. When enough infor-
mation about a code is known, these equations may suf-
fice to determine its weight distribution. As an example,
we caleulate the weight distribution of the dual Golay
(23,11) code without using J. MacWilliams' formula.

2. A Combinatorial Formula

Let P={x, - - ,x,} be a subset of a commutative
ring R, and let S be a subset of order s of the direct prod-
uct P* = PrP* - . - 7P (n times). Assume that § has the
following property for some integer r==n:

(1) The restriction of S to any r coordinates contains all
pfr-tuples of elements of P the same number of times.

{This necessitates p"|s.}

Let o(v) denote the sum (in R) of the coordinates of
the element v of S. We then have:

Theorem 1. For 0=t==r, the sum

2 [o (o))

ve8

depends only on P,n,s (not on §), and we have

B3 (ool = = (olo))*. @

$ ves



\
Proof. Denote the vectors in § by
(UJI’ Oray " ,UITE)
' (021,7-722, et ,vzn)
(Oe1, Oszy * * * ,Vsn) . (3)

Expanding by the multinomial theorem, we get

Z (o{o))' = '2 (vir + v+

ves

.+ vm)r

=é E ______..flL____.—agUdz...U'_:.
) i1 grore alal -+ gyl it iz in

cestZa=n
0xEg;=n

P> -l ( .
— . 2 va; T o« v s 1% .
#1482+ . 11 1" n
...‘+a..=na‘1“12l aﬂl i=1

LI T )

In the sum in parenthesis, at most ¢ of the exponents
a,,d;, * ,@n 4re NONZzZero, $ay ai,di, " ° ,8i,. As i
ranges from 1 to s, it follows by property (1} t‘aat the set
$ip Wiy © 5Dk, )} Tanges through a complete set of
p™ m-tuples, with each m-tu ple occurring the same num-
ber (p*~m) of times. Hence, the sum in parenthesis de-
pends only on P, 5, and a,, @, * * * ,@. Therefore, the
entire sum depends only on P, s, and n, as asserted.

Consider the array obtained by repeating Eq. (3) p*/s
times. This array contains p* vectors and satisfies prop-
erty (1). The set P» also contains p* vectors and satisfies
property (1) for any r = . Hence, by what we have just
proved, we must have Eq. (2} holding, and the proof of
Thegrem 1 is complete.

The proofs of the following simple observations are left
to the reader.

(A) If a set S satisfies property (1), then the set ob-

- tained by restricting the vectors of S to any m < n coordi-

nates also satisfes property (1). (This corrcsponds to
puncturing a code.)

(B) Assume that the set P is closed under addition, so
that it forms an additive group, and that a sct § C P* sat-
isfles property (1). If v is any vector in P?, then the set
4 0= {v, + v:0v.8) also satisfics property (1). In par-

dlar, if S is a subspace of P* over R satisfying prop-
erty (1), then all its cosets satisfy (1).
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Example. Define two n X n matrices of 0's and I's to
be equivalent if one ean be transformed into the other by
complementing appropriate rows and columms, It is easily
verified that this definition of equivalence indeed gives
an equivalence relation. In fact, if we regard the 0's and
Y's as belonging to the field GF (2), then the equivalence
class.containing the 0 matrix forms an additive group of

order 2°#-1 whose cosets are the other equivalence classes.

&

These equivalence classes always satisfy property (1} for
r = 3 (but never for r = 4). If we now regard the under-
lying ring R as the ordinary integers, and if C is any
equivalence class, then Theorem 1 tells us that

3 o(0) = i =3 k( ):nzzzn—z,
E[c(v)]== - ..2 L?( ) = n?(n? + 1) 23,
Eo[o'(v)]“ = A "E, k2 (k)_= nt {n? + 3)22-4,

3. Applications to Group Codes

Let V be an (n, k) group ccde over the field GF (q), i.e,
a k-dimensional subspace of the vector space of all n-tuples
over GF {g). The next theorem then gives the iargest value
of r for which property (1} is valid, ‘

Theorem 2. The set V satisfies property (1} for r= d—1

but not r = d, where d is the mipimum weight of the dual
code.

‘Proof. Let v be a word in the dual code with exactly d
nonzero entries. Since v is orthogonal to every word of V,
this specifies a linear relation which must hold among
some d coordinates of the words in V. Hence, these d
coordinates cannot be chosen arbitrarily, so r=d — L.

Conversely, assume that property (1) fails for some
r=d — 1. Thus; there are some r coordinates whose en-
tries cannot be chosen arbitrarily. If we restrict the vectors
in V to these r coordinates, we get a proper subspace of
the space of all r-tuples over GF {g}. The orthogonal com-
plement of this subspace contains more than one vector
and hence a vector v, of positive weight =r. If we now
extend v, to an n-tuple by putting 0's in the n — r missing
coordinates, we get a word of positive weight =r or-
thogonal to V, a contradiction, Theorem 2 is proved.

Now assume that ¢ = 2, so that V is a binary code. If
we regard the 0's and I's as ordinary integers for the pur-
pose of applying Theorem 1, then o(v) is simply the
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weight of the word v Hence, from Theorem 1 and 2 there

" follows:

Theorem 3. If an {n, k) binary code has a; words of
weight i and if J i¢ the minimum weight of the dual code,

then
n l n "ﬂ
ta;=——3 i |, fe==t=qd-—1,
AN ’kr)

f=0 J=0

Theorem 3 then gives d linear equations which the a;
satisfy, In Table 3, expressions for the function

=20

for 0==t=<6, are given for reference.

Table 3. Values of £ = 3 ,'t(’_‘)
‘ 1

j=0
¢in
zl
- 2"t
min+ 1222

i+ 3yt

alp + 1Hn® + 5n — 25 2°-°

o’ (n* + 100" + 152 — 10) 2°-°

nin 4+ 1)ta* 4+ 140 + 312> — 460 + 14)27°

B A DN s O

For practical purposes, it can always be assumed that
the minimum weight of the dual of a binary (n, k) code
satisfies d > 2. For, if 4 = 1, then one coordinate of V is
always 0, while if d = 2, then V has repeated columns.
Since d > 2, we can ¢..lculate the variance u of the weight
distribution: '

i=0 i=0
~=5r(7)-[£:(7)]
-y

This is necessarily the variance of the binomial distribu-
tion on n tries with success probability %.

Exzample. Using the methods of Solomon and McEliece
(8PS 37-35, Vol. IV, pp. 340-348), it can be shown that the
words of the dual Golay (23,11) code have weight 0, 8,

216

12, or 16. And the dual of this code has minimum weight 7,
50 by Theorem 3,

ag+a;2 +a15=2“ - l
8&5 + 12{112 + 16015 =I23 « 210
64a, + 144a,, 4 236a,, = 2384+ 2°.

These equations are easily solved, giving

0, =506 = 2223,
a;, = 1288 = 5623,
8y = 253 = 11+23.

D. Coding Theory: Efficient
Solutions of Equations
_for Decoding

R. McEliece

1. Infrocduction

In SPS 37.39, Vol. IV, pp. 219-2286, Berlekamp, Rumsey,
and Solomon presented metheds of solving certain alge-
braic equations over finite fields of characteristic 2; such
equations turn up in decoding procedures for Bose-
Chaudhuri codes. We give here a2 more general approach
to the same problem, and succeed in giving explicit soiu-
tions to many equations. These solutions are easily mecha-
nized. In section 3, we indicate how these solutions
represent -a considerable saving of effort over previcus
methods. References to the fundamentals of linear alge-
bra and Galois theory can be found in Ref. 6.

2. Theoretical Results
Throughout this section, K and k represent fields.

Theorem 1. Suppose K is a normal extension of k, and
let ¢ be an automorphism of K/k. View K as a vector
space over k and consider the linear transformations
p=c—land r=1+o+a*+ -+ + ¢! whereris
the order of o. Then the range of p is precisely the null
space of 1.

Proof. Let |K : k| = n, and denote by R., R, and T, T:
the null space and range of p and », respectively, Now
p(x}) =0, if and only if o(x) ==z, so that R, = k., the





