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Abstract 

Stanley, R.P., A combinatorial decomposition of acyclic simplicial complexes, Discrete Mathematics 

120 (1993) 175-182. 

It is proved that if d is a finite acyclic simplicial complex, then there is a subcomplex d’ c d and 

a bijection q:d’+d-d’ such that Fcq(F) and /q(F)-FJ=l for all FEN’. This improves an 

earlier result of Kalai. An immediate corollary is a characterization (first due to Kalai) of the f-vector 

of an acyclic simplicial complex. Several generalizations, some proved and some conjectured, are 

discussed. 

1. Introduction 

Let A be an (abstract) simplicial complex on the vertex set V, i.e., a collection of 

subsets F (called faces) of V such that { X}EA for all XE V and such that if FEA and 

G c F, then GE A. The dimension of a face FEA is defined by dim F = 1 F I- 1, and the 

dimension of A is given by 

d-l=dimA=max{dimF: FEA}. 

Let ff=fi‘( A) denote the number of i-dimensional faces of A, so f_ 1 = 1 unless A =8. 
The vector f(A) = ( fO, . . . ,fd _ 1 ) is called the f-vector of A. 

Fix a ground field K. A is called acyclic (over K) if &‘( A)=0 for all i, where I?‘( A) 
denotes the i-th reduced simplicial cohomology group of A over the coefficient field K. 
Note that the empty set cb is acyclic, but that the simplicial complex (8) is not acyclic 

since d-‘({O})=K. 
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A special class of acyclic simplicial complexes are cones. If d ’ is a simplicial complex 

on v’, and if x is a new vertex not in V’, then the cone d =x * A’ (the join of A’ with the 

vertex x) is defined to be the simplicial complex 

A=x*A’=A’u{{x}uF: FEA’}. 

Note the following property of the cone x * A’: Define r: A’+ A- A’ by 

q(F)=Fu (x}. Then q is a bijection from A’ to A -A’ satisfying: 

(Pl) The domain A’ of y is a subcomplex of A. 

(P2) For all Fed’, we have q(F)=, F and Iv(F)-FI= 1. 

An immediate corollary to these properties is the following: 

(P3) There exists a simplicial complex A, such that 

i~oLOxi=(l +x1 1 uL,(Ao)x’. 
iB0 

Of course the simplicial complex A, of (P3) is just A’. We can ask whether for any 

acyclic simplicial complex A there is a subset A’ c A and bijection 4 : A’ -+ A -A’ 

satisfying (Pl)-(P3). Kalai [8], using his technique of algebraic shifting, first proved 

(P3). Bjorner and Kalai [3,4] went on to give a vast generalization of this result. 

Meanwhile Kalai (private communication) found a proof of (P2) based on algebraic 

shifting, and asked whether (Pl) was also true. In this paper we will prove (Pl) (as well 

as (P2) and hence (P3)) using a somewhat simplified variant of Kalai’s methods. In 

particular, though we work in the exterior algebra as does Kalai, we do not use 

algebraic shifting. 

Let r be a directed graph with vertex set V= {x i, . . , x,}. Recall that a one-factor of 

r is a collection {e,, . . , e,} of edges which are not loops and such that every vertex is 

incident to exactly one of the edges. (Thus n=2m.) The following lemma is closely 

related to but not a direct consequence of [S, Thm. 2.11 [12, Thm. 6.21. 

Lemma 1.1. Let r be a directed graph on the n-element vertex set X. Let KX be the 

K-vector space with basis X. Suppose there is a linear transformation cp : KX + KX 

satisfying the two properties: 

(a) Zf XEX then 

cp(x)Espan,( yEX: (x, y) is an edge ofr). 

(b) im cp = ker cp. (Equivalently cp is nilpotent with all Jordan blocks of size two.) 

Then r has a one-factor Y. In fact, ifX’ is a subset of X whose image in KX/(im cp) is 

a basis for KX/(im cp), then Y can be chosen so that 

X’= {x~X: (x,y)EY for some yEX}, 

i.e., X’ is the set of initial vertices of the edges in Y. 

Proof. Let X’ be a subset of X whose image in KX/(im cp) is a basis for KX/(im cp). 

Since for any cp : KX -+ KX we have dim(ker cp)+dim(im cp) = n, there follows 
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IX’1 =1X-X’I=n/2. By the Marriage Theorem (e.g., [l, Thm. 2.2.11 [11, Ch. 5, 

Thm. 1.11) it suffices to show that for any S G X’, say with ISI = k, there are (at least) 

k vertices yi, . . . , ~,EX - X’ such that for each 1 did k there is an XES with (x, yi) an 

edge of r. Suppose not. Let S={xl,...,xk}. Then cp(xi),...,cp(x,) are linearly 

dependent in KXIKX’, since they are all in the span of fewer than k vertices of r. Thus 

some linear combination a, x1 + ... + akxk (a+K, not all ai =0) belongs to ker cp. But 

kercp=imq, and xi,... , xk are linearly independent modulo im cp. Hence all ai =O, 

a contradiction. 0 

Theorem 1.2. Let A be an acyclic simpliciul complex over some jield K. Then there 

exists a subcomplex A’ c A and a bijection q : A’ + A -A’ such that for all FE A’ we have 

Fcq(F) and /q(F)-FI=l. 

Proof. Let C’ be the space of i-cochains of A (i.e., the K-vector space KA’, where A i is 

the set of i-dimensional faces of A). Let 

()+c-l2+cO~ . . . - &- L 

cd-l+0 (1) 

be the augmented oriented cochain complex used to define the reduced simplicial 

cohomology of A. Let C= KA= C-’ 0 ... 0 Cd-l. The coboundary maps 6’ define 

an overall coboundary map 6: C-+ C. The statement that A is acylic over K is 

equivalent to (1) being exact, i.e., ker 6 = im 6. 

Suppose A has vertex set I’= { vl, . . . , v,}. Let A( K V) denote the exterior algebra of 

the vector space K V. For simplicity we denote the product in /1( K V) by juxtaposition, 

rather than the more customary A. Let Id denote the two-sided ideal of /1( K V) 

generated by all monomials vi1 ... Vi, where (vi,, . . . ,q,}$A. The quotient algebra 

/i[ A] :=A(K V)/ld is called the exterior face ring of A (over K). It has a K-basis 

consisting of all face monomials VF :=Vi, “’ Vi,, where il < ... <i, and 

F = { vi17 . . . , v,}EA. (In particular, aO= 1.) Thus we may identify as a vector space 

/1[ A] with C, by identifying xF~n [A] with FEC. The coboundary map 6 : C + C 

then becomes right multiplication by the element v = v1 + v2 + ... + v, of /1[ A]. 

Consider the quotient space Q = (1 [Al/A [A] v g C/(im 6), where n [A] v denotes 

the right ideal { xv: x~/l[ A] >. (Actually, /i [ A] v is a two-sided ideal and the space 

Q has the structure of a ring, but we do not need this fact here.) Let L be the 

lexicographically least basis (analogous to the definition of the basis M in the proof of 

[ 14, Thm. 2.11) of Q consisting of face monomials xF, with respect to the ordering 

v1 <...<v, of the vertices of A. Thus if GEA and xG$L, then we have a linear 

relationship 

xG=ulxF1+ . ..+atxF’+yv (2) 

in /1[ A], where y~/i[ A], aiE K, and each Fi< G (in the lexicographic order just 

defined). Let A’={FEA: x~EL}. We claim that A’ is a subcomplex of A. This is 

a standard argument, first done in the context of quotients of polynomial rings 
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by Macaulay (see [ 14, Thm. 2.11). Namely, suppose xG$L and F 1 G. We need 

to show xF$L. Multiply (2) on the left by xFmG. Since in A[A] we have 

xFeGxFi= fxcFmGjuFi, we obtain an expression for xF as a linear combination of 

earlier (in lexicographic order) monomials x(~-‘) “Fi modulo the space K [A] v. Hence 

xF$A’ :.s desired, so A’ is a simplicial complex. 

Now let r be the directed graph whose vertex set is A, and whose edges are the pairs 

(F,G) with Fc GEA and IG-FI=l. Define cp:KA+KA by (p=6. By definition of 

the coboundary operator 6, we have that cp satisfies condition (a) of Lemma 1.1, while 

(b) holds since A is acyclic. We can take X’= A’ in Lemma 1.1 by the definition of A’. 

Thus by Lemma 1.1 A has a one-factor Y = {(F, G): FEA’}, so we can define 

q:A’+A-A’by q(F)=G, where (F,G)EY. 0 

Corollary 1.3 ([S]). Fix a field K. Let (fo, . . . , fd_ l)~Zd. The following conditions are 

equivalent: 

(a) There exists a (d - 1)-dimensional acyclic (over K) simplicial complex A with 

f(A)=(fo> . ..&-I). 
(b) There exists a (d-2)-dimensional simplicial complex A’ whose f-vector 

f(A’)=(fb, . . . , f A_ *) is given by 

d-2 d-l 

(1+x) c frxi=i&f;xi. 
i=O 

The Kruskal-Katona theorem gives an explicit characterization of the f-vectors 

(fb, . . . . fh_2) arising in (b) above. See e.g. [l, Ch. 7.33, [7, Thm. 8.53. 

2. Variations and generalizations 

There are many possible directions for extending Theorem 1.2. We discuss in this 

section some of the possibilities. For the most interesting ones we can only offer 

conjectures and not proofs. I am grateful to A. Bjorner, G. Kalai, and J. Munkres for 

helpful discussions related to the work in this section. 

First we can ask whether there is a generalization of Theorem 1.2 valid for any 

simplicial complex. We regard the field K as fixed throughout. Given any simplicial 

complex A, a Betti set is a subset B E A such that for all i, 

# {FEB: dimF=i}=Fi(A). 

Here 

P”,(A)=dimE?‘(A; K), 

the i-th reduced Betti number of A (over K). 
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Proposition 2.1. Any (finite) simplicial complex A can be written as a disjoint union 
A=A’wBwQ where: 

(a) A’ is a subcomplex of A, 
(b) B is a Betti set, 
(c) A’u B is a subcomplex of A, 

(d) there exists a bijection q : A’ +Q such that for all FEA’ we have F c q(F) and 

Iv(F)-F/=1. 

Proof (sketch). The proof is a simple extension of the proof of Theorem 1.2. Using 

notation from that proof, let L be the lexicographically least basis of A[A]/(ker 6) 

consisting of face monomials xF. Let M be the lexicographically least set of face 

monomials for which Lu M is a basis of A [A]/(im 6). Choose A’= { FEA: xF~L}, 

B= {Fed: x’EM}. By definition of fi’(A; K) it follows that B is a Betti set, while 

assertions (a) and (c) follow by reasoning similar to that used in the proof of 

Theorem 1.2. 0 

Unfortunately Proposition 2.1 is not a satisfactory generalization of Theorem 1.2, 

because it is not strong enough to imply the BjiirnerKalai characterization [3,4] of 

pairs (f; /J) such that f is the f-vector and p the sequence of Betti numbers of some 

simplicial complex. The result actually needed (as first observed by Kalai) is the 

following’. 

Conjecture 2.2. The Betti set B in Proposition 2.1 can be chosen to be an antichain, i.e., 

rif F, GEB and F c G, then F = G. 

Another conjectured generalization of Theorem 1.2 is motivated by the following 

result. 

Proposition 2.3. Fix an integer k30. The following conditions are equivalent on 

a vectorf=(f& . ..&I). 
(a) There exists a simplicial complex A with f-vector f such that if FEA and ) FJ <k, 

then lk(F) is acyclic. Here lk(F) denotes the link of F in A. 

(b) There exists a simplicial complex on the vertex set V with f-uectorfsuch that $ 

WC V and / V- WI < k, then the restriction Aw of A to W is acyclic. 

(c) There exists a simplicial complex A’ with f-vector (fb,f;, . . . ,fL_k_2) such that 

Proof. (a) o (b) Straightforward topological argument. 

(c) =S (a) Let cr be a k-simplex and take A = 0 * A’ (the join of 0 and A ‘). 

1 Conjecture 2.2 was proved by Art Duval after this paper was completed 
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(a) a(c) Let r be the simplicial complex obtained from A by algebraic shifting 

(over the field K), as described in [3, Thm. 3.11 (but with a different notation). I am 

grateful to G. Kalai for informing me that algebraic shifting preserves the property 

that lk (F) is acyclic for all FEN satisfying 1 F 1 d k, so r also has this property. It is easy 

to see that any shifted complex (as defined in [3]) with this property is the join of the 
simplex ~=2i’~2s...3k+11 with another simplicial complex d ‘. Since r is shifted and 

f(d)=f(r) [3, Thm. 3.11, we have 

as desired. 0 

Note. It is easy to see, without using any algebraic machinery, that if A satisfies the 

condition of Proposition 2.3(a) then the polynomial F(x)=Cfi-1x’ is divisible by 

(l+X)k+‘. But we do not see how to show without algebraic shifting even that the 

quotient F(x)/(l +x)~+I has nonnegative coefficients. 

The ‘simplest’ example of a simplicial complex A satisfying the condition of 

Proposition 2.3(a) is just the join 0 * A’ used to prove (c) *(a). In this case A (regarded 

as a poset under inclusion) can be partitioned into intervals [F, G], FEA’, each of 

length k+ 1. Moreover, the bottom elements F of these intervals form a simplicial 

complex (namely, A’). This motivates the following conjecture. 

Conjecture 2.4. Let k and A be as in Proposition 2.3(a). Then A can be partitioned into 

disjoint intervals [F, G], all of length k + 1. Moreover, the bottoms F of these intervals 

form a subcomplex A’ of A. 

There is a further and well known conjecture concerning partitioning of simplicial 

complexes A [15, p. 1491 [6, Rmk. 5.21. Namely, if A is CohenMacaulay then it can 

be partitioned into disjoint intervals [F, G] such that the tops G of these intervals are 

all facets of A. We may extend this conjecture as follows: Suppose depth K[A] =6, 

where K [A] denotes the face ring (or Stanley-Reisner ring) of A. (A topological 

description of depth K [A] is given by Munkres [ 10, Thm. 3.11.) Then (conjecturally) 

A can be partitioned into disjoint intervals [F, G] such that the tops G of these intervals 

satisfy dim G>6. We can combine this conjecture with Conjecture 2.4 as follows. 

Conjecture 2.5. Suppose A satisfies the condition of Proposition 2.3(a), and let depth 

K [A] =a. Then A can be partitioned into disjoint intervals [F, G] satisfying: 

dimG36, dimG-dimF=k+l. 

Let us now consider some generalizations of the concept of simplicial complex itself. 

There are three successively more general classes of complexes with which we will be 

concerned. All these complexes are always assumed to be finite. 
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(A) CW-semilattices, or equivalently, regular CW-complexes for which the inter- 

section of two closed cells is a closed cell. 

(B) CW-posets, or equivalently, regular CW-complexes. These are essentially 

posets P with 0 such that the order complex of every open interval (0, x) is a triangula- 

tion of a sphere. If P is in addition a semilattice, then we get a CW-semilattice. For 

further information, see [2]. 

(C) CW-complexes, as defined e.g. in [9, 131. 

The possible (A fi)-pairs of all three classes (A)-(C) have been characterized. (A) 

appears in [4, Thm. l] while (B) and (C) are in [3, Thm. 6.11. In all three cases, the 

characterization is implied by (but does not directly imply) decomposition properties 

analogous to our previous results and conjectures. We first state these properties and 

then discuss their validity. We omit the easy arguments which show that these 

decompositions do indeed imply the (L fi)-characterizations of Bjorner and Kalai. As 

in the case of simplicial complexes, a Betti set (over K) of a more general complex P is 

a subset B of its closed cells such that Bi(P)= # { FEP: dim F= i}, where B,(P) 
denotes the ith reduced Betti number of P (over the coefficient field K). 

(A’) (CW-semilattices). We can write P as a disjoint union P=P’ I;! Q, where: 

(a) P’ is a subcomplex of P (i.e., an order of ideal of P, regarded as a poset), (b) B is 

a Betti set, (c) B is an antichain, (d) P’uB is a subcomplex of P, and (e) there 

exists a bijection q : P’ + Q such that f or all FEP’ we have F<q(F) and 

dim v(F)-dim F= 1. (Note that these conditions are exactly analogous to those of 

Proposition 2.1 and Conjecture 2.2.) 

(B’) (CW-posets). We can write P as a disjoint union P=P’uBuQ such that 

(a) P’ contains faces of dimensions - 1, 0, 1, . . . , dim P - 1, (b) B is a Betti set, and 

(c) same as condition (e) of (A’). 

(C’) (CW-complexes). We can write the set P of closed cells as a disjoint union 

P=P’wB u,Q such that (a) B is a Betti set, and (b) there exists a bijection ye : P’ + Q 
such that for all FEP’ we have that F lies on the boundary of y(F) and 

dim y(F)-dim F= 1. (We do not say F<v(F) as in (A’) and (B’), since for general 

CW-complexes the closure of every cell need not be a union of open cells, so there is no 

nice poset structure on the cells. Moreover, even if the closure of every cell is a union of 

open cells, the poset of closed cells ordered by inclusion does not determine the 

CW-complex or even its homology.) 

The status of the possible decompositions (A’)-(C’) is as follows. For an arbitrary 

CW-complex P, let Ck be the space of k-chains, i.e., the K-vector space with basis 

consisting of the k-dimensional open cells of P. Then there exists a coboundary map 

6=dk: Ck +Ck+l such that (a) for any k-cell F, we have that 6(F) is a linear 

combination of (k + 1)-cells G whose closure (? contains F, (b) 68 =O, and 

(c) Hk(lPI; K)s(ker s”)/(im dkp ‘), w h ere Hk( IPI; K) denotes singular cohomology 

and lPI=UFEp F. These facts follow, e.g., from [9, $391 (which deals with homology 

instead of cohomology, but the arguments are essentially the same in either case). We 

then obtain (C’) by reasoning as in the proof of Theorem 1.2 and Proposition 2.1, but 

taking L and M to be any set of faces forming a basis of the appropriate vector spaces. 
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To prove (B’), we need only to show in addition that for k<dim P there exists 
a k-chain ueCk such that 6(u) #O. But if F is any k-cell then we can take u = F. Thus 
(B’) and (C’) are true, so we have a combinatorial refinement of the (f, fl)-character- 
izations in these cases. 

There remains the case (A’). Here we do not see how to show properties (a), (c) and 
(d) so this case remains open. Even when P is acyclic (so B=@, (c) is trivially true, and 
(d) follows from (a)), we do not see how to prove (a). 
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