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Schubert polynomials were introduced and extensively developed by Lascoux
and Schiitzenberger, after an earlier less combinatorial version had been considered
by Bernstein, Gelfand and Gelfand and Demazure. We give a new development of
the theory of Schubert polynomials based on formal computations in the algebra of
operators u,, u,, .. satisfying the relations u?=0, wau;=wu; if [i—jl =2, and
W, U =u,, w1, . We call this algebra the nifCoxeter algebra of the symmetric
group %,. Our development leads to simple proofs of many standard results, in
particular, (a) symmetry of the “stable Schubert polynomials” F,,, (b) an explicit
combinatorial formula for Schubert polynomials due to Billey, Jockusch and
Stanley, (c) the “Cauchy formula” for Schubert polynomials, and (d) a formula
of Macdonald for &,(1, 1, ..). Our main new result is a proof of a conjectured
g-analogue of (d), due to Macdonald which gives a formula for S,(1, g, g% ...).
G 1994 Academic Press, Inc.

1. INTRODUCTION

Schubert polynomials were introduced and extensively developed by
Lascoux and Schiitzenberger ([L-S, L-S,], etc.), after an earlier less com-
binatorial version had been considered by Bernstein, Gelfand, and Gelfand
[B-G-G] and Demazure [D]. A treatment of this work, with much
additional material, appears in [M] and will be our main reference on
Schubert polynomials. The Schubert polynomial indexed by the permuta-
tion w is denoted &,, = S,(x,, X,, ..). The theory of Schubert polynomials
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is intimately related to the divided difference operators 8; (see Defini-
tion 3.4), which satisfy the “nilCoxeter relations”

82=0
0,0,=0,0,, li—jl=2
ai0i+lai=ai+laiai+l'

We will give a treatment of Schubert polynomials based on formal
elements u, satisfying the above relations. More precisely, all our computa-
tions take place in the algebra 4, with generators u,, u,, .., u,_,. By
elementary applications of the nilCoxeter relations we recover much of the
known theory of Schubert polynomials, including (a) symmetry of the
“stable Schubert polynomials” F, (see comments after Lemma 2.1), (b) an
explicit combinatorial formula for Schubert polynomials due to Billey,
Jockusch, and Stanley (Theorem 2.2), (c)the “Cauchy formula” for
Schubert polynomials (Corollary 44), and (d) a formula of Macdonald for
S.(1,1,..) (Lemma 2.3). Our main new result is a g-analogue of (d)
above, viz, a formula for &,(1,q, ¢° ..) originally conjectured by
Macdonald [M, (6.11,?)]. Our methods are similar to those in [F1], where
related techniques are used to derive basic properties of Schur functions,
skew Schur functions, and the “shifted Schur functions” P, and Q;.

2. MAIN RESULTS

Let %, denote the symmetric group of permutations of {1, .., n}. Let s,
i=1,..,n—1, be adjacent transpositions, i.c., permutations interchanging i
and {+ 1 and leaving all the other elements fixed. For any w e %, denote by
l(w) the length of w, ie., the minimal p such that w can be represented as

W=5,5,"S,

@ »

for certain a,, a,, .., a,; such a sequence a=(a,, .., a,) is called a reduced
decomposition (or reduced word) provided p=I/(w). The set of all reduced
decompositions of w is denoted R(w).

Let K be a field (or in fact any commutative ring). We assume K
contains various indeterminates used later, viz., X, X1, X3, ey Vs Vis V2o ey G-
Define a K-algebra .4, with identity /, which we call the nilCoxeter algebra
of the symmetric group .%,, as follows: .4, has generators u, u,, .., 4,
and relations

u?=0
WU =uu;, li—jl=2 (2.1)

Wildj U= Uiy (Uil g, I<isn-—-2
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There are several “concrete” ways of looking at the algebra 4,: (a) A, is
the K-algebra with basis consisting of %, and multiplication - given by

uv, if  Huv)=1lu)+I(v)
Uol= .
0, otherwise,

where u, ve ¥, and uv denotes ordinary product of permutations. (b) A}, is
faithfully represented by the algebra generated by the divided difference
operators 0,,..,0,_; defined in Definition 3.4. (c) .4, is faithfully
represented by the algebra of operators generated by ¢, .., ¢, ;:
KY¥, — K¢, defined by

(W)= wS;, Kws;)=I(w)+1

(W)= {0, otherwise.

If (a,..,a,) is a reduced word, then we will identify a monomial
Uy Uy - U, in A, with the permutation w=s,s, - 5, €. The rela-
tions (2.1) ensure that this notation is well-defined, and that .4, has the
K-basis ,. Write { f, w) for the coefficient of we &, in the element f of .#4,.
For instance,

(1 +u,)(1+ 1)), 321> =2 (';') 42 (';1)

Throughout the paper X = (X, -, X, 211, Y= (V15 wo» Vo1 ) Xoo = (X715 X2, o).
Define

Ai(x)=A, ,(x)= T+ xu,_ I+ xu,_5) - (I+xu,) (22)
fori=1,..,n—1. Let

G(x)=A4(x)A(x3) -, (2:3)

S(x)=A,(x1) - A, ((x,_1)- (2.4)

Thus A4,(x), G(x,), S(x)e A,. Denote for we ¥,
G(x.)=<KG, w)

S.(x)=<(B,w).
Direct inspection allows us to rewrite these formulae as
Gw(xoo)= Z Z xb; "'xbpy
(ai,...ap) € R(w) b1, bp
1<bi< - <by
aj<aiy1=b;<bis|
S.x)= ¥ 5 Xpy e X,
(a1, ..dp) € R(w) b1y bp
ISig<b < <bp<sn—1

ai<ajp1=bi<bisy
bi<a;
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This definition of G, appears in [S, (1); M, (7.18)] (where F,, in these two
references is our G,,-1), and that of &, in [B-J-S]. We will derive the main
properties of these polynomials directly from the relations (2.1).
2.1. LEMMA. A,(x) and A,(y) commute.
This immediately implies that the F,’s and G,’s are symmetric functions
in x,,x,--- (cf. [S, Theorem 2.1; M, p. 102]).
2.2. THEOREM. G, (X) is a Schubert polynomial.
(See [M] for (alternative) definitions of Schubert polynomials, and
[B-J-S] for another proof of Theorem 2.2.)
2.3. LEMMA. Suppose char K=0. Then G(1,.., 1)=exp(u, +2u,+
3“3 + b )
This identity can be rewritten as
1
6w(1”1)=—_‘ Z a---4a,
p' (a|,..,,ap)e R(w)

(cf. [M, (6.11)]).
The following g-analogue of this formula was conjectured by Macdonald
M, (6.11,7)].

2.4. THEOREM.

1 )
ew(l’ q, s qn-Z) =_——|_ Z [(11] e [ap] q}:ai(aiHl,
[p] (ay,...ap)e R(w)

where [m] denotes 1 +q+ --- +q™ ', and [p]'=[1]1[2]---[p]

3. ProOFs OF LEMMA 2.1 AND THEOREM 2.2

Define h(x)=1+ xu,. A straightforward computation provides a full list
of relations between the A, (x)’s.

3.1. Lemma. (1) hi(x) b (y)=h(y) hi(x), li—jl = 2;
(i) h(x)h(y)=h,(x+ ), h;(0)=1 (so h;(x) h(—x)=1);
(i) h(x)h o ((x+yYh(¥)=h () hi(x+ ) By (X).
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Rewrite (2.2) as A,(x)=4h,_,(x}h, _,(x)---h;(x). The following simple
observations will be useful in the sequel:

Ai(x) =4, (x) h(x);
A (x)=A,(x) h;(—x);
A;(x) hi(x)=h;(x) 4,(x) if izj+2

Proof of Lemma 2.1. Induction on n—i. For i=n—1 the fact is trivial.
Assume

A A ((y)=4;,01(p) 4,41(x)
is given. Then

Ai(x) A (P) =4, (x) h(x) Ai oY) B (9) Bi(y)
=A; 1 (x) A;H(Y) i(X) By (Y) B(Y — x) hy(x)
=A; (%) i oY) b i (Y = X) hi(¥) iy 1 (x) Bi(x)
=A; (p) Ay 1 (x) iy (= x) B (p) By (X) Bi(x)
=A; 1 (V) A o(xX) h(¥) by () By (x)
=A; 1 (P) A (¥) Aio(x) by (x) hi(x)
=A4:(y) 4i(x). 1§

32 LemMa. A (x) A, (»)u,=A(y) A; (X)) u,.

Proof. This identity means that the left-hand side is symmetric in x
and y. Write

Ai(x) A, () ui=Ai ()T + xu) A1 (Y)
=A; () A (V) ui+ xA, () u A (9T + yus o)
and note that the first summand is symmetric by Lemma 2.1. Now
xA; () A, () w4 yuy ) w,
=XxA;1(X) Ay (0) YT+ yup )i
=xpA; () A () g uug g

which is also symmetric. |

3.3. LemMa. A (x) A, (¥)—A;(Y) Ao ((x)=(x—y) A;(x) 4, ((p)u,.
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Proof.

A (x) A (V) + yA;(x) A () u;
=Ai(x)Al'+l(y)(I+yui)=Ai(x)Ai(y)=Ai(y)A[(x) (Lemma 2.1)
=Ai(y)A|’+l(x)(I+xui):Ai(y)Ai+1(x)+xAi(y)Ai+](x)ui
= A3 Ay () F XA () Ay (3w, (Lemma32). |

3.4. DErINITION (Schubert Polynomials [M]). Define the divided dif-

Jerence operators 0, acting in K (recall K is assumed to contain independent
indeterminates xj by

o fx) =L =SIX)

Xi— Xipi

where T,X={(Xy, s Xi_1s Xi 41> Xi» Xi4 25 -); in other words, 7, inter-
changes x; and x,, ,. Schubert polynomials can be defined recursively by

(i) S,x)=x]"'x37%...x, forwo=nn—-1,.,1,
(i) S,.(x)=0,3,,(x) whenever we S, l[(ws;)=Hw)+ 1.
(It is shown in [M] that € (x) is well-defined by (i)-(ii).)
3.5 LeMMA. 3,8(x)=S(x) u,.
Proof. Since
8,8(x)=A(x1) - 0,(A:(x;) Aiy 1 (x4 1)) i 2(Xi2) -
and
S(x)u,=A1(x;) - A0x) Ao 1 (X )i A o(Xi42) s
the statement of the lemma follows from
O (A (x) A (X D))= A (%) A (x4 ) us
This is exactly Lemma 3.3. ||
Proof of Theorem 2.2. We need to prove, in our terms, that
(Sx) wey=x "2 72 x, (3.1)

and

0:{8(x), ws; > =<{S(x), w) if lws;)=Hw)+ 1. (3.2)
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The equality (3.1) is almost obvious from (2.4) and (2.2): to get from [ to
wo one should take x,u; from each factor in the expansion of S(x); (3.2)
follows from Lemma 3.5. |

Theorem 2.2 was originally proved in [B-J-S] by more complicated
means. It can also be derived from some work of Lascoux and Schiitzen-
berger, as shown in [ R-S, after Theorem2].

Remark. There is a class of polynomials related to Schubert polyno-
mials for which an analogue of Theorem 2.2 holds. Define a K-algebra ¥,
with identity I, called the nilCoxeter-Knuth or nilplactic algebra (first
defined by Lascoux and Schiitzenberger in [L-S;]), as follows: #, has
generators v, v,, ..., U, _; and relations

v3=0
VU0, = DUV, and viv e =v,, ifi<j<k
DUy = U Ux 0; and U 00, =00, 0,1k —i22
Uil 1 U;= 0,44 004 15 I<isn-2

Thus the nilCoxeter algebra .4, is a quotient algebra of .f,. Pick a basis
M for A, which consists of monomials in the v/’s. Just as for the nilCoxeter
algebra, let
Bi(x)=B, (x)=(+xv,_ )I+xv,_,) - (I+xv;),
fori=1,.,n—1; and let
K(x)=B(x;)-- B, _1(x,_)

Given ue M, it follows from [R-S, Theorem 3] that (&, u) is a key poly-
nomial K, for a certain sequence a = (a,, «,, ...) of nonnegative integers «;
with finite sum. We refer the reader to [R-S] and the papers of Lascoux

and Schiitzenberger cited there for the precise definition and additional
properties of key polynomials.

4. CaucHY ForMULA AND DOUBLE SCHUBERT POLYNOMIALS

Define

A=A, =h h () h,_y(p)
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(cf. (2.2)). By analogy with (2.4), let
é(Y)=":1'7.41(}4”1)"‘/Zl(yl)-

4.1. LeMMA. A, (x) and A,(y) commute.
Proof. By Lemma 3.1(ii), we have 4,(y)= A, '(—y). Since 4;(x) and
A;(y) commute by Lemma 2.1, the proof follows. |
42 LemMMA. A, y(yao0) - Ad0) i) = hy (3o +X) - B34 x)
Ay (Yn-2) - Aiia(3i)
Proof. Use Lemma 4.1 to obtain
Ap A(Puor) - Ai(3:) Ai(x)
= A, (Yuot) A (i) Ai(x) A:(3)
= A nos) Arca(Dind) e s () Ai i (yig ) Bi(x) Ailys)
= A, (ao1) - Aies(Viss) Aiia(x)
X Aip2(Viv2) B i (%) iy 1(Dir) i) Ai()
= o =Ry (X) Ay (V1) B %) Ay oY 2) - h(x) i)
=hy Xt Yo oo Y 2) A ((Yasa) B+ 3) A i(35)
=h, (X + Yo 1)y _o(X+ y,_2)
hi(x+y) Ay i(¥a2) - Ains(y) B

4.3. LEMMA.
n—2
Sy)ex)= [I II hvi x4y, (4.1)
d=2—n i—j=d
i+j<n

where in the first product the factors corresponding to d=2—n,3—n, ...,
n—2 are multiplied left-to-right. (Factors in the second product commute.)

Proof. Repeatedly apply Lemma 4.2 and then rearrange factors. |J

4.4, CorOLLARY (“Cauchy Formula” [M, (5.10)]).

By)(x)we>= [I (xi+3)

i+j<n

(Recall wy=(n, ..., 1).)
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Proof. The right-hand side of (4.1) contains exactly (3) factors. Thus to
obtain w, from I one should take (x;+u;) u,, , , from each factor. ||

4.5. LeMMA. Let we &,. The polynomial (3(y) S(x), w) is the double
Schubert polynomial &, (x, —y) of Lascoux and Schiitizenberger (see
Macdonald [M, (6.1)]).

Proof. Use descending induction on /(w). The basis (w = wy) is exactly
Corollary 4.4. The induction step follows immediately from Lemma 3.5. |}

5. MACDONALD’S IDENTITIES

5.1. LEMMA (¢f. [M, p.89]). S(y, .., ¥)S(x, ., x)=C(y+x, .., y+X).
Proof. 1In the case y,= --- = y,_, =y one can check that
n-—2
@(Y)ZQ(Y)Z l_I n hi+jvl(y)

d=2-n i-j=d
itjsn

(by rearranging factors). Hence, Lemma 4.3 gives

S(Y, w0 V) S{x, ooy X)

n—2
[T II Asy (+x)=8(+x..y+x). |

d=2—-n i—j=d
i+j<n

Al

Proof of Lemma 2.3. Lemma 5.1 implies that there is an element
f=fluy, uy, ...) of A, such that

S(x, ..., x)=exp(xf). (5.1)
Differentiation of (5.1) with respect to x shows that

d
:(—i—x'- S(x, x)x=0'

From definition (2.4)/(2.2) and the Leibniz rule we obtain f =u, + 2u, +
3us+ ---, as desired. |

5.2. LEMMA. G(q", gt g TTY = St gt ., g
. _1hi(g'(1—q7)), where in the (non-commutative) product the factors
j=n-1M\4 q

are multiplied in decreasing order (with respect to j).
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Proof. First note that the relations {2.1) are homogeneous and there-
fore all the arguments of any formula involving #,s may be simultaneously
multiplied by one and the same term (in our case, by ¢'). So it suffices to
prove the lemma for i=0.

Induction on n. The cases n=2, 3 are easly checked. Now

(g, 4% q" Y, (1=q""") - h(1—q)
=A4(9) Ax(g%) - A (g" Ve (1 —¢" 1) - hi(1 —g)
=Ax(q) hi(q) - A, (g ) by 5(g" )
xh,_1(g"" Vb, (1—g""") - hy(1—q)
=Axq) - A, (q"7?) hi(q) ho(g?) -
Ry 2(q" ") by (1) by 5(1—g"" %) hy(1—¢q)
=4y(q) - A (g ) By (1—q" %)
hy(1—q) hi(1) hy(q) h3(g®) - h,_1(q" %)
(by repeated use of Lemma 3.1(iii))
=Ay(1)--- 4, (¢"" Y hi(1) hy(q) -~
h,_.(g"~?)  (by the induction hypothesis)

=A4,(1)- A4, _oq" ) h, 1(g" )=l q,..q"""). |

The next lemma is a g-analogue of Lemma 2.3. A standard g-analogue of
the exponential function is

tP

[M+a¢-agn=7 ¢

b
k20 P20 [p]!

where [ p]! is defined in Theorem 2.4, One can thus recognize the right-
hand side of the next lemma as a (non-commutative) g-analogue of the
right-hand side of Lemma 2.3.

53. LemMA. (1,4, 4% .. ¢" ) =TTho o 1o A (g* (1 —g’)), where
in the (non-commutative) products the factors are multiplied in decreasing
order (with respect to k and j).

Proof. Repeatedly use Lemma 5.2, ||

607.103,2-6
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54. LeEMMA. Let t|, ., t, , be some elements of an associative algebra
over K with identity I. (So we disregard the relations between t,’s, if any.) Let
g, 2y, s 2, .1 be formal variables. Then

0 1
ko )= Zal“'Za Sai<a; ¢
[ AL rrasm= 2 b Giti—gp ™ e

k=0 j=n—1 =20 ay,..,

(Recall [p]'=[11[2]---Lp), [m]1=(1—-¢")/(1 —4).)

Proof. Actually the lemma claims that the coefficient c,,...,,, of £, .., in

0 1
IT II (+4")

k=0 j=n—1

is given by
calma"=f17—]!(_11:—qqua’@”li'
Denote
8_{1 if a,<a;,,
0 if a,>a;,,.
Then

P
—_ k
Car-ap = 2 [T ¢"
P
kizkyz - 2kp20 i=1
ai<ai1=>ki>kiy)

o o S
— i, kp 1 k1
k,=0 kp1=kptep_y ky=ky+ ¢
oo o 1
_ k 2k + ¢
= Z g - Z q ._——1_
k=0 ky=k3+e2 q
o o 1 1
_ k. 3k3+ 282+ ¢
= Z qP..‘ Z q 1_ > -—-———_
kp=0 ky=ka+ €3 q q

1 1
1l—g? ' 1-g

o
— ... = Z qpk,,+(p~r|)£p,|+-~+2£2+81_

ky=0

=qpap+ o 4282+ )

= Z”IS‘IH»I’- - ——
1 [P (1—q)
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Proof of Theorem 2.4. Combine Lemma 5.3, Lemma 5.4 (with ¢;=u,,
z;=1—¢’), and our definition of Schubert polynomials. |
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