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Smith normal form

A: n x n matrix over commutative ring R (with 1)
Suppose there exist P, Q € GL(n, R) such that
PAQ =D = dia,g(dl, dldg, Ce ,dldg S dn),

where d; € R. We then call B a Smith normal
form (SNF) of A.
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Smith normal form

A: n x n matrix over commutative ring R (with 1)
Suppose there exist P, Q € GL(n, R) such that
PAQ = B = diag(dl, dldg, Ce ,dldg T dn),

where d; € R. We then call B a Smith normal
form (SNF) of A.

NOTE. (1) Can extend to m x n.

(2) unit - det(A) = det(B) = d?dy ' -+ d,,.

Thus SNF is a refinement of det. I



Row and column operations

Can put a matrix into SNF by the following
operations.

» Add a multiple of a row to another row.
» Add a multiple of a column to another column.
» Multiply a row or column by a unit in R.
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Row and column operations

Can put a matrix into SNF by the following
operations.

» Add a multiple of a row to another row.

» Add a multiple of a column to another column.
» Multiply a row or column by a unit in R.

Over a field, SNF is row reduced echelon form

(with all unit entries equal to 1).



Existence of SNF

PIR: principal ideal ring, e.g., Z, K |z|, Z/mZ.
If Ris a PIR then A has a unique SNF up to units.



Existence of SNF

PIR: principal ideal ring, e.g., Z, K |z|, Z/mZ.
If Ris a PIR then A has a unique SNF up to units.

Otherwise A “typically” does not have a SNF but
may have one in special cases.
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Algebraic note

Not known in general for which rings R does
every matrix over R have an SNF.



Algebraic note

Not known in general for which rings R does
every matrix over R have an SNF.

Necessary condition: R is a Bézout ring, i.e.,
every finitely generated ideal is principal.

Example. ring of entire functions and ring of all
algebraic integers (not PIR’s)
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Algebraic note

Not known in general for which rings R does
every matrix over R have an SNF.

Necessary condition: R is a Bézout ring, i.e.,
every finitely generated ideal is principal.

Example. ring of entire functions and ring of all
algebraic integers (not PIR’s)

Open: every matrix over a Bézout domain has

an SNF.



Algebraic interpretation of SNF

R: a PID

A:an n x n matrix over R with rows
v1,...,0, € R"

diag(eq, e, ...,e,): SNF of A



Algebraic interpretation of SNF

R: a PID

A:an n x n matrix over R with rows
v1,...,0, € R"

diag(eq, e, ...,e,): SNF of A
Theorem.

R"/(vi,...,v,) Z(R/e1R)®--- D (R/e,R).
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Algebraic interpretation of SNF

R: a PID

A:an n x n matrix over R with rows
v1,...,0, € R"

diag(eq, es,...,e,): SNF of A
Theorem.

R"/(vi,...,v,) 2 (R/etR)®--- & (R/e,R).
R"/(vy,...,v,): (Kasteleyn) cokernel of A

B



An explicit formula for SNF

R: aPID
A:ann x n matrix over R with det(A) # 0

diag(eq,eq,...,e,): SNF of A



An explicit formula for SNF

R: a PID
A:ann x n matrix over R with det(A) # 0
diag(eq,eq,...,e,): SNF of A

Theorem. eje, - - - ¢; IS the gecd of all v x ¢+ minors
of A.

minor: determinant of a square submatrix.

Special case: ¢, is the gcd of all entries of A.



An example

Reduced Laplacian matrix of /;:

3 —1 —1 |
A= | -1 3 -1
~1 -1 3




An example

Reduced Laplacian matrix of /{;:

A:

3 —1 —1

-1 3 -1
-1 -1 3

Matrix-tree theorem — det(A) = 16, the
number of spanning trees of K.
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An example

Reduced Laplacian matrix of /{;:

A=

3 —1 —1

-1 3 -1
-1 -1 3

Matrix-tree theorem — det(A) = 16, the
number of spanning trees of K.

What about SNF?
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An example (continued)

3 —1 —1
1 3 -1
1 -1 3

0 0 —1
— 10 4 0
4 —4 0

0O 0 —1
—4 4 —1
8 —4 3
0 0 —
— [ 0 4
4 0

0
4 4 0
8 —4 0
10 0
0 4 0
00 4

0 —1




Reduced Laplacian matrix of K,

LO(Kn) = nly,_1— Ju
det Ly(K,) = n"?



Reduced Laplacian matrix of K,

Lo(K,) = nly, 1 — Jy
det Ly(K,) = n"?

Trick: 2 x 2 submatrices (up to row and column
permutations):

n—1 -1 -1 —1 1 -1
1 n—1| 1 -1 =1 1|

with determinants n(n — 2), —n, and 0. Hence
e1e9 = n. Since H €; = n"~? and €¢‘€i+1, we get

the SNF diag(1,n,n,...,n). I



Laplacian matrices of general graphs

SNF of the Laplacian matrix of a graph: very
interesting

connections with sandpile models, chip firing,
abelian avalanches, etc.

B



Laplacian matrices of general graphs

SNF of the Laplacian matrix of a graph: very
interesting

connections with sandpile models, chip firing,
abelian avalanches, etc.

no time for further details
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Laplacian matrices of general graphs

SNF of the Laplacian matrix of a graph: very
interesting

connections with sandpile models, chip firing,
abelian avalanches, etc.

no time for further 1
o time fo utedetals&,
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SNF of random matrices

Huge literature on random matrices, mostly
connected with eigenvalues.

Very little work on SNF of random matrices over
a PID.

B



Is the question interesting?

Matg(n): all n x n Z-matrices with entries in
|—k, k] (uniform distribution)

pr(n, d): probability that if M € Mat,(n) and
SNF(M) = (eq,...,e,), then e; = d.
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Is the question interesting?

Matg(n): all n x n Z-matrices with entries in
|—k, k] (uniform distribution)

pr(n, d): probability that if M € Mat,(n) and
SNF(M) = (eq,...,e,), then e; = d.

Recall: ¢; = gcd of 1 x 1 minors (entries) of M

B



Is the question interesting?

Matg(n): all n x n Z-matrices with entries in
|—k, k] (uniform distribution)

pr(n, d): probability that if M € Mat,(n) and
SNF(M) = (eq,...,e,), then e; = d.

Recall: ¢; = gcd of 1 x 1 minors (entries) of M

1
d"¢(n?)

Theorem. lim;_, pip(n,d) =

B



Specifying some e;

with Yinghui Wang



Specifying some e;

with Yinghui Wang (EA%)



Specifying some e¢;

with Yinghui Wang (EA%)

Two general results.
s letay,...,a, 1 €P, a;la;.

i (n): probability that the SNF of a random
A € Mat(n) satisfies e; = «; for
1 <a; <n-—1.

p(n) = lim pi(n).

Then u(n) exists, and 0 < u(n) < 1. I



Second result

» Letao, € P

v (n): probability that the SNF of a random
A € Maty(n) satisfies e, = «,.

Then

lim vi(n) = 0.
k—00



Sample result

i (n): probability that the SNF of a random
A € Maty(n) satisfies e; = 2, e; = 6.

p(n) = lim pi(n).
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Cyclic cokernel

k(m): probability that an n x n Z-matrix has SNF
diag(ey,es,...,e,) Withey =e3=---=¢, 1 =1



Cyclic cokernel

k(m): probability that an n x n Z-matrix has SNF

diag(ey,es,...,e,) Withey =e3=---=¢, 1 =1
H <1 | 1 | 1 | _|_ i)
[ p2 | p3 [ pn

Theorem. x(n) =




Cyclic cokernel

k(m): probability that an n x n Z-matrix has SNF

diag(ey,es,...,e,) Withey =e3=---=¢, 1 =1
H <1 | 1 | 1 | _|_ i)
- ; | P2 | P> | P
eorem. —

w(n) C2)CE)
Corollary. . =\ _ 1

) = O T o)

~ 0.846936--- .



Small number of generators

g. number of generators of cokernel (number of
entries of SNF £ 1) as n — oo

previous slide: Prob(g = 1) = 0.846936 - - -
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Small number of generators

g. number of generators of cokernel (number of
entries of SNF £ 1) as n — oo

previous slide: Prob(g = 1) = 0.846936 - - -

Prob(g < 2) = 0.99462688 - -
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Small number of generators

g. number of generators of cokernel (number of
entries of SNF £ 1) as n — oo

previous slide: Prob(g = 1) = 0.846936 - - -

Prob(g < 2) = 0.99462688 - - -
Prob(g < 3) = 0.99995329 - - -
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Small number of generators

g. number of generators of cokernel (number of
entries of SNF £ 1) as n — oo

previous slide: Prob(g = 1) = 0.846936 - - -

Prob(g < 2) = 0.99462688 - - -
Prob(g < 3) = 0.99995329 - - -

Theorem. Prob(g < /) =

1 — (3.46275 - )2~"F (1 + O(27")) I



Small number of generators

g. number of generators of cokernel (number of
entries of SNF £ 1) as n — oo

previous slide: Prob(g = 1) = 0.846936 - - -

Prob(g < 2) = 0.99462688 - - -
Prob(g < 3) = 0.99995329 - - -

Theorem. Prob(g < /) =

1~ (3.46275---)2 V(14 027")) I



3.46275 - - -

3.46275 - - =




Example of SNF computation

A: a partition (A1, \o, ... ), identified with its Young
diagram

(3.1)




Example of SNF computation

A: a partition (A1, \o, ... ), identified with its Young
diagram

(3.1)

A*. X extended by a border strip along its entire
boundary
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Example of SNF computation

A: a partition (A1, \o, ... ), identified with its Young
diagram

(3.1)

A*. X extended by a border strip along its entire
boundary

(3,1)* =(4/4,2) I




Initialization

Insert 1 into each square of \*/\.

(3,1)* =(4,4,2)




M;

Let ¢ € \. Let M, be the largest square of \* with
t as the upper left-hand corner.



M

Lett € \. Let M; be the largest square of \* with
t as the upper left-hand corner.




M

Lett € \. Let M; be the largest square of \* with
t as the upper left-hand corner.




Determinantal algorithm

Suppose all squares to the southeast of ¢t have
been filled. Insert into ¢ the number n,; so that
det Mt = 1.



Determinantal algorithm

Suppose all squares to the southeast of ¢t have
been filled. Insert into ¢ the number n,; so that
det Mt = 1.
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Determinantal algorithm

Suppose all squares to the southeast of ¢t have
been filled. Insert into ¢ the number n,; so that
det Mt = 1.




Determinantal algorithm

Suppose all squares to the southeast of ¢t have
been filled. Insert into ¢ the number n,; so that
det Mt = 1.

2

—_ - =
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Determinantal algorithm

Suppose all squares to the southeast of ¢t have
been filled. Insert into ¢ the number n,; so that
det Mt = 1.




Determinantal algorithm

Suppose all squares to the southeast of ¢t have
been filled. Insert into ¢ the number n,; so that
det Mt = 1.




Determinantal algorithm

Suppose all squares to the southeast of ¢t have
been filled. Insert into ¢ the number n,; so that

det Mt = 1.

_ — = = =]

1
1

B



Uniqueness

Easy to see: the numbers n; are well-defined and
unique.



Uniqueness

Easy to see: the numbers n; are well-defined and
unique.

Why? Expand det M; by the first row. The
coefficient of n; Is 1 by induction.

B



A(t)

If £ € A\, let A(t) consist of all squares of \ to the
southeast of ¢.



A(t)

If £ € A\, let A(t) consist of all squares of \ to the
southeast of ¢.

A= (44,3




A(t)

If £ € A\, let A(t) consist of all squares of \ to the
southeast of ¢.

A= (4,4,3)
A(t) =(3,2)




ux = #{pn : p S A}



ux = #{p : p CA}
Example. U21) = D:




ux = #{p : p CA}
Example. U21) = D:

There is a determinantal formula for «,, due
essentially to MacMahon and later Kreweras

(not needed here).



Carlitz-Scoville-Roselle theorem

» Berlekamp (1963) first asked for n; (mod 2)
In connection with a coding theory problem.

» Carlitz-Roselle-Scoville (1971):
combinatorial interpretation of n; (over Z).
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Carlitz-Scoville-Roselle theorem

» Berlekamp (1963) first asked for n; (mod 2)
In connection with a coding theory problem.

» Carlitz-Roselle-Scoville (1971):
combinatorial interpretation of n; (over Z).

Theorem. n; = U (1)
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Carlitz-Scoville-Roselle theorem

» Berlekamp (1963) first asked for n; (mod 2)
In connection with a coding theory problem.

» Carlitz-Roselle-Scoville (1971):
combinatorial interpretation of n; (over Z).

Theorem. n; = U (1)

Proofs. 1. Induction (row and column

operations).

2. Nonintersecting lattice paths.

B



An example

(| 3|2
2




An example

3

2




A g-analogue

Weight each 1. C A by ¢4,



A g-analogue

Weight each 1 C X by ¢VH.

\= 64431, g =42211, @M=



ux(q)

QORI

ue)(q) =1+2¢+ ¢+ ¢°




Diagonal hooks

di()\):)\i—l—)\;—Qi—Fl

di =9, dy=4, d3—1 I



Main result (with C. Bessenrodt)

Theorem. M; has an SNF over Z|q|. Write
d; = d;(N). If My isa (k+ 1) x (k+ 1) matrix then
M, has SNF

dk;_l—l—dk dl—l—dg—i—“'—l—dk)
- .

diag(1,¢™, g 0 q

B



Main result (with C. Bessenrodt)

Theorem. M; has an SNF over Z|q|. Write

d; = d;(N). If My isa (k+ 1) x (k+ 1) matrix then
M. has SNF

di—1+dy
.

diag(l, qdk7 q d1‘|—d2+"'—|—dk).

NG|

Corollary. det M, = ¢,
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Main result (with C. Bessenrodt)

Theorem. M; has an SNF over Z|q|. Write

d; = d;(N). If My isa (k+ 1) x (k+ 1) matrix then
M. has SNF

diag(l, qdk7 qdk—1‘|‘dk7 o 7qd1‘|—d2+"'—|—dk).

Corollary. det M, = ¢,

There Iis a multivariate generalization.

B



An example

A=06431, d1 =9, dy=4, dy=1



An example

A=06431, d1 =9, dy=4, dy=1

SNF of M;: (1,q,¢°,¢"") |



A special case

Let \ be the staircase 6,, = (n — 1,n—2,....,1).



A special case

Let \ be the staircase 6,, = (n — 1,n—2,....,1).
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A special case

Let \ be the staircase 6,, = (n — 1,n—2,....,1).

us._,(q) counts Dyck paths of length 2n by
(scaled) area, and is thus the well-known
g-analogue C,,(q) of the Catalan number C,,.

B



A g-Catalan example

Fe w0 Gl=+@+20+]1



A g-Catalan example

e e 0 Gl=¢+P+2q+1

Ci(q) Cs3(q) 14¢q .
Cs(q) 14+q 1 |°~ diag(l,q,¢°)
14+ ¢ 1 '

since dq(3,2,1) =1, dy(3,2,1) = 5.
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A g-Catalan example

e e 0 Gl=¢+P+2q+1

Ci(q) Cs3(q) 14¢q .
Cs(q) 14+q 1 |°~ diag(l,q,¢°)
14+ ¢ 1 '

since dq(3,2,1) =1, dy(3,2,1) = 5.

» ¢-Catalan determinant previously known

» SNF is new I



Ramanujan




Ramanujan

THE END

B
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