FREE PROBABILITY FOR COMBINATORIALISTS

Richard P. Stanley
Department of Mathematics
M.I.T. 2–375
Cambridge, MA 02139
rstan@math.mit.edu
http://www-math.mit.edu/~rstan

Transparencies available at:

http://www-math.mit.edu/~rstan/trans.html

- D. Voiculescu
- R. Speicher
- A. Nica
- P. Biane

Classical (commutative) probability: $b_i, i \in I$ random (complex) variables in a commutative \mathbb{C} -algebra \mathcal{B} with 1

$$\{b_i: i \in I\}$$
 are **independent** if $E(b_{i_1}^{r_1} \cdots b_{i_n}^{r_n}) = E(b_{i_1}^{r_1}) \cdots E(b_{i_n}^{r_n})$ (s.t.a.) $\forall i_1, \ldots, i_n$ all distinct.

Equivalently, let \mathcal{B}_i , $i \in I$ be unital subalgebras, with E(1) = 1. Then \mathcal{B}_i , $i \in I$ are **independent** if

$$E(b_1 \cdots b_n) = 0$$

whenever $E(b_j) = 0$ $(1 \le j \le n)$ and $b_j \in \mathcal{B}_{i_j}$ with i_1, \ldots, i_n all distinct.

Free (noncommutative) probability: $\mathcal{A} = \mathbb{C}$ -algebra with 1; regard elements as random variables.

 A_i , $i \in I$: unital subalgebras

 $\varphi: \mathcal{A} \to \mathbb{C} \text{ linear } (\mathbf{expectation})$

$$\varphi(1) = 1$$

The \mathcal{A}_i 's are **free** if $\varphi(a_1 \cdots a_n) = 0$ whenever $\varphi(a_j) = 0 \ (1 \le j \le n)$ and $a_j \in \mathcal{A}_{i_j}$ with $i_j \ne i_{j+1} \ (1 \le j < n)$.

Note. Does **not** reduce to classical case when \mathcal{A} is commutative. E.g., independent a, b need not satisfy $\varphi(aba) = 0$.

Let \mathcal{B}, \mathcal{C} be free, $b, b_i \in \mathcal{B}$, etc. Formal computation gives:

$$\varphi(bc) = \varphi(b)\varphi(c)$$

$$\varphi(b_1c_1b_2c_2) = \varphi(b_1b_2)\varphi(c_1)\varphi(c_2)$$

$$+\varphi(b_1)\varphi(b_2)\varphi(c_1c_2)$$

$$-\varphi(b_1)\varphi(b_2)\varphi(c_1)\varphi(c_2),$$

etc.

MOMENTS AND CUMULANTS

Classical case. Let x, y be independent random variables from the probability distributions (measures) μ_x, μ_y , say with compact support. Given the **moments** $E(x^n), E(y^n)$, we want

$$E((x+y)^n).$$

Let

$$F_{\mu}(t) = \sum_{n>0} E(x^n) \frac{t^n}{n!},$$

essentially the **Fourier transform** of μ .

convolution: Classical convolution defined by

$$\mu_{x+y} = \mu_x * \mu_y$$

Then

$$F_{\mu*\nu}(t) = F_{\mu}(t)F_{\nu}(t)$$

 $\log F_{\mu*\nu}(t) = \log F_{\mu}(t) + \log F_{\nu}(t).$

 $(\log F \ \mathbf{linearizes} \ *)$

Hence if $m_n = E(x^n)$ and

$$F_{\mu}(t) = \sum_{n \ge 0} m_n \frac{t^n}{n!} = \exp \sum_{n \ge 1} \mathbf{c_n} \frac{t^n}{n!},$$

then c_n is a **cumulant** and

$$c_n(x+y) = c_n(x) + c_n(y)$$

 $m_n = \sum_{\{B_1, \dots, B_r\} \in \Pi_n} c_{\#B_1} \cdots c_{\#B_r}.$

Now let a, b be free. Define

$$\mu_{a+b} = \mu_a \oplus \mu_b$$

the **free convolution** of μ_a and μ_b .

Cauchy transform:

$$G_{\mu}(z) = \int \frac{a}{z - a} d\mu(a)$$

$$= z^{-1} + \sum_{n \ge 1} \varphi(a^n) z^{-n-1} \in \mathbb{C}[1/z],$$

the **ordinary** generating function for the moments $m_n = \varphi(a^n)$.

Define the **R-transform** $R_{\mu}(z)$ by

$$\mathbf{R}_{\mu}(z) + \frac{1}{z} = G_{\mu}(z)^{\langle -1 \rangle}$$

(compositional inverse), so

$$G_{\mu}\left(R_{\mu}(z) + \frac{1}{z}\right) = z.$$

Theorem. $R_{\mu \boxplus \nu} = R_{\mu} + R_{\nu}$

Set
$$R_{\mu}(z) = \frac{1}{z} + \sum_{n \ge 1} k_n(a) z^{-n-1}$$
, so

$$k_n(a+b) = k_n(a) + k_n(b)$$

when a, b are free. Call $k_n(a)$ a **free** cumulant of μ .

 \mathbf{NC}_n : lattice of noncrossing partitions of $\{1, 2, \dots, n\}$.

$$\#NC_n = C_n = \frac{1}{n+1} {2n \choose n}$$

 $\#(\text{max. chains}) = n^{n-2}$
 $\mu(\hat{0}, \hat{1}) = (-1)^{n-1} C_{n-1}$

$$\varphi(a^n) = m_n = \sum_{\{B_1, \dots, B_r\} \in \mathbb{NC}_n} k_{\#B_1} \cdots k_{\#B_r},$$
where $k_i = k_i(a)$.

$$k_{13}(a^3b^2ca^2c^5)$$

$$\mu_{ab} = \mu_a \bowtie \mu_b$$
etc.

RANDOM MATRICES

Let A be a random $n \times n$ hermitian matrix, chosen from the **Gaussian unitary ensemble** (**GUE**). Let

$$\theta_1 > \cdots > \theta_n$$

be the spectrum of A.

Choose $w \in \mathfrak{S}_n$ uniformly, and let $(\lambda_1, \ldots, \lambda_n)$ be the shape of w under the RSK algorithm.

Theorem. θ_i and λ_i have the same distribution (after rescaling) as $n \to \infty$.

Let A, B, C be $n \times n$ hermitian matrices with eigenvalues $\alpha = (\alpha_1, \dots, \alpha_n)$, $\beta = (\beta_1, \dots, \beta_n)$ and $\gamma = (\gamma_1, \dots, \gamma_n)$.

Horn's conjecture. Characterization of (α, β, γ) when A + B = C.

$$s_{\mu}s_{\nu} = \sum_{\lambda} c_{\mu\nu}^{\lambda} s_{\lambda}$$

 $c_{\mu
u}^{\lambda}$: Littlewood-Richardson coefficient

Saturation conjecture.

$$c_{k\mu,k\nu}^{k\lambda} \neq 0 \Rightarrow c_{\mu\nu}^{\lambda} \neq 0$$

Klyachko. Saturation \Rightarrow Horn.

Knutson-Tao. Saturation conjecture is true.

$$A = n \times n$$
 hermitian matrix spectrum : $\theta_1, \dots, \theta_n$

 ρ_A = "natural" measure on $n \times n$ hermitian matrices A' with $\operatorname{spec}(A) = \operatorname{spec}(A')$

$$\mathbf{\nu_A} = \frac{1}{n} \sum_{j=1}^{n} \delta_{\theta_j}$$

(mass 1/n at each eigenvalue).

 $A_n, B_n : n \times n \text{ hermitian}$ (s.t.a.)

Let ν_1, ν_2 be probability measures with compact support on \mathbb{R} such that

$$\nu_{A_n} \to \nu_1, \quad \nu_{B_n} \to \nu_2$$
(weakly).

Theorem. Choose A'_n and B'_n from ρ_{A_n} , ρ_{B_n} . Then

$$\nu_{A'_n+B'_n} \rightarrow \nu_1 \boxplus \nu_2$$

(weakly, in probability) as $n \to \infty$.

I.e., if we know $\operatorname{spec}(A)$ and $\operatorname{spec}(B)$ (n large) then we can bet with a good chance to win, that

$$\nu_{A+B} \approx \nu_A \oplus \nu_B$$
.

Thus $\operatorname{spec}(A)$ and $\operatorname{spec}(B)$ determine $\operatorname{spec}(A+B)$ almost surely as $n\to\infty$.

Equivalently, A'_n and B'_n become free in the limit $n \to \infty$ with respect to

$$\varphi(\cdot) = \frac{1}{n} \operatorname{tr}(\cdot).$$

ASYMPTOTIC REPRESENTATION THEORY OF \mathfrak{S}_n

Fix $\mu \vdash k$. Let $\lambda \vdash n$,

 χ^{λ} = irred. char. of \mathfrak{S}_n indexed by λ

$$\chi^{\lambda}(\mu) := \chi^{\lambda}(\mu 1^{n-k}),$$

value at $w \in \mathfrak{S}_n$ of cycle type $(\mu, 1^{n-k})$.

Asymptotics of $\chi^{\lambda}(\mu)$ for μ fixed, n large?

$$|\omega(u) - \omega(v)| \le |u - v|, \ \omega(u) = |u| \text{ for } |u| >> 0$$

$$\sigma(u) = \frac{1}{2}(\omega(u) - |u|) \text{ (compact support)}$$

$$G_{\omega}(z) := \frac{1}{z} \exp \int_{\mathbb{R}} \frac{1}{x - z} \sigma'(x) dx$$

$$G_{\omega_{\lambda}} = \frac{\prod (z - y_i)}{\prod (z - x_i)}$$

$$G_{\omega}(z) = \frac{1}{z} + \sum_{n \ge 1} a_n(\omega) z^{-n-1}$$

$$K_{\omega}(z) = G_{\omega}(z)^{\langle -1 \rangle}$$

$$= \frac{1}{z} \sum_{n \ge 1} C_n(\omega) z^{n-1}$$

$$C_1(\omega) = 0 \ \forall \omega, \ C_2(\omega_{\lambda}) = |\lambda|$$

 $a_n(\omega)$ is a moment and $C_n(\omega)$ a free cumulant of some probability measure m_{ω} .

Consequences.

Theorem. Let $\lambda^n \vdash n$ and

$$\omega_{\lambda}^{2}n(u) = n^{-1/2}\omega_{\lambda}^{2}n(n^{1/2}u)$$

(so diagram of λ is rescaled to have area 1). Suppose that

$$\hat{\omega}_{\lambda^n} \to \omega$$

$$(so C_2(\omega) = 1). Then \chi^{\lambda^n}(\nu, 1^{n-k})/f^{\lambda^n}$$

$$= \left(\prod_{i=1}^{\ell} C_{\nu_i+1}(\omega)\right) n^{(k-\ell)/2} \left(1 + O\left(\frac{1}{n}\right)\right),$$

where

$$\nu = (\nu_1, \dots, \nu_\ell) \vdash k$$

$$f^{\lambda^n} = \chi^{\lambda^n} (1^n)$$

$$= \# \text{SYT of shape } \lambda^n.$$

Theorem (asymptotic Littlewood-Richardson rule). *Let*

$$\hat{\omega}_{\mu^n} \to \omega, \quad \hat{\omega}_{\nu^n} \to \omega'.$$

Almost all shapes (counting multiplicity) appearing in $s_{\mu} n s_{\nu} n$ are "near" a shape λ^n such that

$$\hat{\omega}_{\lambda^n} \to \omega \boxplus \omega',$$

where $C_n(\omega \boxplus \omega') = C_n(\omega) + C_n(\omega')$.