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Classical (commutative) prob-
ability: b;,7 € I random (complex)
variables in a commutative C-algebra B
with 1

{b; : © € I} are independent if
r 'n\ __ T n
E(bZl1 : bzn) — E(b”l) -+ E(b, ) (s.t.a.)
Vi1, ..., 1y all distinct.

Equivalently, let B;, ¢ € [ be uni-
tal subalgebras, with F(1) = 1. Then
B;, © € I are independent if

Eby---byp) =0

whenever E(b;) =0 (1 < 7 < n) and
b; € Bij with 41, ..., 2, all distinct.



Free (noncommutative) proba-
bility: A = C-algebra with 1; regard
elements as random variables.

A;. i € I : unital subalgebras

@ : A — C linear (expectation)

p(l) =1
The A;’s are free if p(aj---ap) = 0
whenever p(a;) = 0 (1 < j < n) and
a; € AZ']. with L] =+ Li1 (1<7<n).

Note. Does not reduce to classical
case when A is commutative. E.g., in-

dependent a, b need not satisfy p(aba) =
0.



Let B,C be free, b,b; € B, etc. For-

mal computation gives:

p(bc) = o(b)p(c)
p(bicibaco) = p(bibo)p(c1)w(co)
+p(b1)p(b2)p(cies)
—p(b1)p(b2)p(c1)p(co),

etc.



MOMENTS AND
CUMULANTS

Classical case. Let x,y be inde-
pendent random variables from the prob-
ability distributions (measures) pg, fiy,
say with compact support. Given the
moments F(z"), F(y"), we want

E((z+y)").

Let

essentially the Fourier transform of
(L.



convolution: Classical convolution
defined by

Hx+y = Hx * Hy
Then
Frsw(t) = Fu(t)Fu(t)
log Fluxp(t) = log F(t) + log Fy(t).

(log F' linearizes )

Hence if my,, = E(2") and

t" "
Fult) = S maly =0 3 culy

n>0 ' n>1
then ¢, 1s a cumulant and
cn(T+y) = cn(x) +enly)

Mn = Z C#DB1" " CHEDBy
(By,....BrYell,
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Now let a, b be free. Define

Ha+bh = MatE g

the free convolution of pg and py,.

Cauchy transform:

Gu(z) :/ " du(a)

z—a
=z 1+ Z p(a™)z7"t e /2],
n>1

the ordinary generating function for
the moments m, = ¢(a").



Define the R-transform R, (z) by
1
Ru(z) +— = Gu(z) !

(compositional inverse), so

G, (Ru(z) | 2) .

Theorem. R,m, = R, + Ry

Set Ry,(z :—+an PR
n>1

kn(a+b) = kp(a) + kn(b)

when a, b are free. Call kp(a) a free
cumulant of u.
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INC,,: lattice of noncrossing partitions
of {1,2,...,n}.
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I [2n
#NCn Cn_n+1<n)

#(max. chains) = n" 2

/L(O, i) — (_1)n_1Cn—1

pla") =mp = Z kup, - - kup,,
{Bl,...,Br}GNCn

where k; = kj(a).
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RANDOM MATRICES

Let A be a random n X n hermitian

matrix, chosen from the Gaussian uni-
tary ensemble (GUE). Let

61> ---> 0y,
be the spectrum of A.

Choose w € &, uniformly, and let
(A1, ..., An) be the shape of w under
the RSK algorithm.

Theorem. 0, and \; have the same
distribution (after rescaling) as n —
00.
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Let A, B, C ben X n hermitian ma-
trices with eigenvalues o« = (arq, . . ., an)

/6: (ﬁlw“aﬁn) and’)/: (717"'7/)/%)-

Horn’s conjecture. Characteriza-
tion of (cv, 3,7) when A+ B =C.

A
A

¢,p + Littlewood-Richardson coetlicient

)

Saturation conjecture.

Klyachko. Saturation = Horn.

Knutson-Tao. Saturation conjec-
ture 1s true.
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A = n X n hermitian matrix
spectrum : @¢,...,0,

P A = ‘natural” measure on n X n
. . /.
hermitian matrices A" with

spec(A) = spec(A”)

1 n
1=1

(mass 1/n at each eigenvalue).

Ap, By o nxnhermitian  (s.t.a.)

Let 1, 9 be probability measures with
compact support on R such that

VA, — U1, VB, — 19

(weakly).
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Theorem. Choose A, and B], from

PA,, PB,- Then
VAL 4Bl — V1 H 1o
(weakly, in probability) as n — oo.
[.e., if we know spec(A) and spec(B)

(n large) then we can bet with a good
chance to win, that

VA+B R UVABUYR.

Thus spec(A) and spec(B) determine
spec(A + B) almost surely as n — oo.

Equivalently, A7, and BJ, become free
1in the limit n — oo with respect to

o) = ~tr(-).

n
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ASYMPTOTIC
REPRESENTATION
THEORY OF G,

Fix p = k. Let A =n,
X)\ = irred. char. of &,, indexed by A

XM () = x N1,
value at w € &, of cycle type (1, ln_k).

Asymptotics of Y ) for p fixed, n
large?
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X1Y1 X2 Yo X3Y¥Y3 %4

Wy,
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lw(u)—w(v)| < |lu—v|, w(u) = |u|for |u| >> 0

o (u) = %(w(u)—]u!) (compact support)
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G =
' H(Z — ;)
G(z) = é ST (w)r !

||

N |
Q
S
S
N
1

Ci(w) =0Vw, Cowy) =l
ap(w) is a moment and Cp(w) a free

cumulant of some probability measure

My,
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Consequences.

Theorem. Let N+ n and

win(u) = n_l/Qw)\n(nl/Zu)

(so diagram of X is rescaled to have
area 1). Supppose that

L?J)\n — W
(s0 C’g(w) —1). Then " (v,1" %)/ fA"

HCI/Z-I—l n(F=0/2 (1 + O (%)) :

where

v = (v,...,vp) Fk
=
= # SYT of shape \".

22



Theorem (asymptotic Littlewood-Rich-
ardson rule). Let

A N /
wlun—>w, wyn%w.

Almost all shapes (counting multiplic-
ity) appearing in Synsyn are ‘near” a
shape \"' such that

(;J)\n — W EBLU/,

where Cp(wB W) = Ch(w) + Cp(W).
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